
Characterizing Impacts of Storage Faults on HPC
Applications: A Methodology and Insights

Bo Fang,∗
‡

Daoce Wang,†
‡

Sian Jin,† Quincey Koziol,§ Zhao Zhang,¶

Qiang Guan,‖ Suren Byna,§ Sriram Krishnamoorthy,∗† Dingwen Tao†
∗∗

∗ Pacific Northwest National Laboratory, Richland, WA, USA
† Washington State University, Pullman, WA, USA

§ Lawrence Berkeley National Laboratory, Berkeley, CA, USA
¶ Texas Advanced Computing Center, Austin, TX, USA

‖ Kent State University, Kent, OH, USA

Abstract—In recent years, the increasing complexity in scien-
tific simulations and emerging demands for training heavy arti-
ficial intelligence models require massive and fast data accesses,
which urges high-performance computing (HPC) platforms to
equip with more advanced storage infrastructures such as solid-
state disks (SSDs). While SSDs offer high-performance I/O, the
reliability challenges faced by the HPC applications under the
SSD-related failures remains unclear, in particular for failures
resulting in data corruptions. The goal of this paper is to
understand the impact of SSD-related faults on the behaviors
of complex HPC applications. To this end, we propose FFIS,
a FUSE-based fault injection framework that systematically
introduces storage faults into the application layer to model the
errors originated from SSDs. FFIS is able to plant different
I/O related faults into the data returned from underlying file
systems, which enables the investigation on the error resilience
characteristics of the scientific file format. We demonstrate the
use of FFIS with three representative real HPC applications,
showing how each application reacts to the data corruptions,
and provide insights on the error resilience of the widely adopted
HDF5 file format for the HPC applications.

I. INTRODUCTION

In recent years, the increasing complexity in scientific
simulation and emerging demands for training heavy artificial
intelligence (AI) models require massive and fast data ac-
cesses, which urges high-performance computing platforms to
equip more advanced storage infrastructures. To this end, flash-
based solid-state drives (SSDs) have been widely employed in
HPC systems as a replacement of hard disk drives (HDDs)
to achieve an order of magnitude speedup in data access.
Prior studies [1]–[3] showed that this rapid adoption of SSD-
based I/O components, however, raises a new challenge to
the overall HPC reliability. As shown in [1], uncorrectable
bit error rate (UBER) of data center SSDs are between
10−11, 10−9, which results in a collective high error rate
on the large-scale HPC system and breaks the JEDEC 2016
requirement for enterprise class (¡10−16) [4]. Such concern
is expected to be continuously present due to the fact that
the sources of SSD failures, i.e., cell wear-out, program/read
disturb errors, retention errors, power faults, radiations, etc,
would not dissolve shortly.
‡

These authors contributed equally.∗∗
Corresponding author: Dingwen Tao (dingwen.tao@wsu.edu).

There are two classes of failures prominently experienced
on SSDs: fail-stop and partial disk failures. Unlike the fail-
stop failures that cause the SSDs to become inaccessible from
the higher level of the stack, partial drive failures only affect
a portion of the SSD operations and the device remains to
work from the user’s perspective [5]–[12]. The consequence
of the partial failures is severe: they may cause corrupted data
on SSDs and trigger issues in the file system and application
layers in the I/O stack. Therefore, HPC applications need to
mitigate the impact of the partial disk failures and tolerate the
data corruption propagation due to such failures from SSDs.

Mitigating data corruption in an HPC application has been a
challenging task that requires efficient and effective solutions.
Towards this goal, a wide spectrum of studies [13], [14]
employ statistical fault injections to characterize the impact
of hardware faults, and take the characteristics obtained on
per application basis to guide the design of the fault tolerance
strategy. However, since the common fault models investigated
in those studies are bit-flip faults affecting computational units
and memory, their insights are not indicative to reason about
the application’s error resilience characteristics against SSD-
related data corruption, which demands a new systematic
characterization approach.

The goal of this paper is to provide methodology for
characterizing how different types of SSD-related faults would
affect the behaviors of the HPC applications. We mimic the
impact of partial disk failures on applications by introducing
faults via an application’s I/O operations and observe the
outcomes of the applications after the fault injection. We
introduce a fault injection framework, FFIS1 (FUSE-based
Fault Injection for Storage) that leverages the FUSE [15]
interface to systematically inject faults into the applications’
I/O path. FFIS supports multiple fault models, each of which
represents a specific data corruption scenario observed from
the partial disk failures. FFIS offers a uniform interface for
users to apply fault injection campaigns on various real HPC
applications, without any modification on the applications.

FFIS is built based on the following key assumptions:
(i) we focus on the data corruption that manifests on the

1https://github.com/FabioGrosso/pFsysFI.

mailto:dingwen.tao@wsu.edu

application level, such as bit flips, shorn writes, etc. We
explain the details of these faults in Section IV.(ii) those errors
can further propagate beyond the file system layer [16]–[18],
skip the verification mechanisms (e.g., fsck [19]) and silently
compromise the data integrity of the applications.

Enabled by FFIS, systematic fault injection studies can
be performed to reveal error resilience characteristics of an
application or the common components exercised across ap-
plications: (i) FFIS is able to evaluate different inherent error
masking capabilities for different applications, or to measure
such ability of each phase of an application. This suggests
a potential trade-off space for HPC systems to lower the
requirement of the SSDs’ reliability for faster data access
while maintaining the same level of the overall application’s
reliability; (ii) as the modern HPC applications tend to leverage
the scientific file format for efficient data management, FFIS is
able to investigate how the certain scientific file format library
handles the storage errors affecting both the file metadata and
application data, thus to obtain the possible common error
resilience characteristics of the applications while operating on
such file format. This paper makes the following contributions:

• We design and build a fault injection framework, called
FFIS, to model SSD-related failures at software level and
to inject such faults systematically into HPC applications.

• We apply FFIS on three real-world HPC applications
through comprehensive, large-scale fault injection exper-
iments. Our evaluation shows that applications exhibit
distinct error resilience characteristics for different fault
models, and we offer the detailed explanation for each
application’s unique resilience characteristics.

• We unveil application-specific behaviors operating on the
most widely adopted scientific file format - HDF5, and
show the fault-tolerance behaviors of the HDF5 library
against errors affecting the HDF5 metadata. We identify
certain fields in the metadata that may cause SDC out-
comes when affected by faults, and provide the solutions
for auto-correction. To the best of our knowledge, it is
the first research effort to systematically characterize the
detailed error resilience of the HDF5 file format.

II. BACKGROUND

In this section, we describe the key context for our study and
its importance to motivate the FFIS framework development.

Fault, error, and failure: As described in [20], a (hardware)
fault, error, and failure chain is defined as the following events:
“a service is a sequence of a system’s external states, a service
failure means that at least one (or more) external state of the
system deviates from the correct service state. The deviation
is called an error. The adjudged cause of an error is called a
fault”. Below we specify these terms in the different context:

• Storage system: an SSD’s partial failures refer to the
events where SSDs are not providing the expected be-
havior or outcomes such that the SSDs’ internal states
are left with flipped bits or shorn data, and what causes
such failures are considered as hardware faults, including
power faults or ratification faults, etc..

• File system: the file system failures refer to the unsuc-
cessful file operations such as I/O errors returned to the
application, which can result from the storage failures, or
software bugs (not covered in this study).

• Application: a failure of an application refers to that
scenario that the outcome of the application differs from
the expected: the application either terminates before it
finishes (i.e., crash), or it suffers from data corruption. If
the application is able to identify the errors, this failure
is categorized as detected, otherwise such data corruption
becomes silent data corruption (SDC).

FUSE File system in user-space is the most widely used
user-space file system framework [15] on Unix/Linux systems.
It exposes the file operations to the file system users and allows
the users to implement their own file operations such as open(),
read(), write(),etc. if needed. When a FUSE file system is
in use, the programs are able to access the data using the
standard file operation system calls (i.e., POSIX) through the
implementation of those system calls in the FUSE.

Why choose FUSE We choose FUSE as the underline
file system interface for the fault injection framework for
two reasons: (i), as the goal is to study the impact of the
failures on applications, the fault injection framework focuses
on mimicking the SSD-related faults occurring during the I/O
operations in the application level. FUSE allows us to imple-
ment such faults with a relatively straightforward manner;(ii),
since a FUSE-based file system works as the callbacks for
the file operations, it allows the applications to call the user-
implemented I/O primitives without modification on either the
application or the actual running file system. This releases the
burden for HPC applications that usually consists of complex
behaviors and conservative execution environment.

Manifestation of SSD failures Zheng et al. [21] found that
the power faults can cause a large number of SSDs to fail
partially and produce the number of chip-level bit errors that
exceed the correction capability of SSDs’ error correcting code
(ECC) and bypass the SMART (Self-Monitoring, Analysis and
Reporting Technology) system [22]. For example, A recent
study [1] reports that on SSDs the occurrence of partial
drive failures that lead to data corruption can be an order
of magnitude higher than on HDDs [1]. As shown in [16],
this type of the SSD failures can manifest in the file system
and affect the application’s I/O behaviors. This leads to two
classes of failures in general: (a) the file system throws the
I/O errors and leaves the handling to the application and the
typical failures include uncorrectable bit corruption, metadata
corruption, incomplete I/O operations; (b) the file system
does not detect such failures and the failures may cause data
corruption in the application. These failures include silent bit
corruption (bit flips in the data), shorn write (a write operation
is partially done on the device), and dropped write (the file
system issues the write but never gets executed on the device),
which is the focus of this paper.

Why focusing on HDF5 file format Hierarchical Data
Format version 5 (HDF5) provides an API for performing I/O,
data management tools, and a portable file format [23]. In

2

	Introduction
	Background
	FFIS framework
	Design Goal
	Fault Model
	FFIS Workflow

	Evaluation Methodology
	Experimental Platform
	Fault Model Specification
	Evaluation Applications and Fault Injection Approaches
	Nyx
	QMCPACK
	Montage

	HDF5 Metadata Fault Injection

	Evaluation Results
	Results for Faults Affecting HDF5 Metadata
	Results for Faults Affecting Application Data

	Related work
	Conclusion
	References

