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Abstract—Vast volumes of data are produced by today’s scientific simulations and advanced instruments. These data cannot be

stored and transferred efficiently because of limited I/O bandwidth, network speed, and storage capacity. Error-bounded lossy

compression can be an effective method for addressing these issues: not only can it significantly reduce data size, but it can also

control the data distortion based on user-defined error bounds. In practice, many scientific applications have specific requirements or

constraints for lossy compression, in order to guarantee that the reconstructed data are valid for post hoc analysis. For example, some

datasets contain irrelevant data that should be isolated in particular and users often have intuition regarding value ranges, geospatial

regions, and other data subsets that are crucial for subsequent analysis. Existing state-of-the-art error-bounded lossy compressors,

however, do not consider these constraints during compression, resulting in inferior compression ratios with respect to user’s post hoc

analysis, due to the fact that the data itself provides little or no value for post hoc analysis. In this work we address this issue by

proposing an optimized framework that can preserve diverse constraints during the error-bounded lossy compression, e.g., cleaning

the irrelevant data, efficiently preserving different precision for multiple value intervals, and allowing users to set diverse precision over

both regular and irregular regions. We perform our evaluation on a supercomputer with up to 2,100 cores. Experiments with six real-

world applications show that our proposed diverse constraints based error-bounded lossy compressor can obtain a higher visual quality

or data fidelity on reconstructed data with the same or even higher compression ratios compared with the traditional state-of-the-art

compressor SZ. Our experiments also demonstrate very good scalability in compression performance compared with the I/O

throughput of the parallel file system.

Index Terms—Big data, error-bounded lossy compression, data reduction, large-scale scientific simulation

Ç

1 INTRODUCTION

MODERN scientific simulations can produce extraordinary
volumes of data. For example, climate and weather

simulations [1] can produce terabytes of data in amatter of sec-
onds [2], and the Hardware/Hybrid Accelerated Cosmology
(HACC) simulation code [3] can generate petabytes of data
from a single run. The resulting data must be stored for subse-
quent use; however, the cost and availability of storage often
lead to difficult decisions regarding future utility. Further,
there is a growing need to transfer and share simulation data
over wide area networks (e.g., via Globus [4]), which may
have lower bandwidth.

Error-bounded lossy compressors [5], [6], [7], [8], [9],
[10], [11] are widely used to reduce scientific data volumes
while meeting user requirements for data fidelity. For
instance, the SZ [6], [12], ZFP [5], and MGARD [13] com-
pressors each allow users to request that the difference
between original and reconstructed data be bounded by a
specified absolute error bound (i.e., a threshold) when per-
forming lossy compression. Climate research scientists have
verified that the reconstructed data generated by error-
bounded lossy compressors are acceptable for post hoc
analysis [2], [14], [15]. Similarly, adopting a customized
error-bounded lossy compressor has been shown to reduce
the memory capacity required for general quantum circuit
simulations [8].

Existing error-bounded lossy compressors have a signifi-
cant limitation, however: none support preserving specific
constraints, such as isolating irrelevant values, preserving
value ranges, or preserving different precisions for different
value intervals in the dataset or different regions in the
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space. For example, in environmental science, different val-
ues in a dataset commonly have different significance to
post hoc analysis. Thus, users hope to set different preci-
sions (or error bounds) based on various value intervals in
the dataset. A typical example is tracing a hurricane’s mov-
ing trajectory over the sea: only the data points whose water
surface values are greater than a threshold (such as 1 meter)
are interesting to environment scientists. The Nyx cosmo-
logical simulation [16] presents another good example as
scientists performing post hoc analysis focus on a specific
quantity of interest (e.g., dark matter halo cell information).
According to the dark matter halo analysis algorithm, the
construction of dark matter halos is determined primarily
by the values of two fields (dark matter density and baryon
density) in a specific value interval of [81,83]. Therefore, in
order to preserve the features (such as the count and loca-
tion) of the dark matter halos, the values in this interval
should have higher precision than the values in other inter-
vals. Some other datasets such as the Community Earth Sys-
tem Model (CESM) [1] map the geolocations into the data
location, and it is important to choose certain regions for
investigation. When studying the impact of weather in the
United States, for example, scientists may care more (or
only) about the areas within or near U.S. boundaries.

In this paper we propose a novel compression method
based on the SZ error-bounded lossy compression frame-
work,1 which allows users to specify constraints, such as
setting different error bounds in various value intervals or
spatial regions, so that the reconstructed data can meet
users’ required quality better than traditional uniform
error-bounded lossy compression can. In particular, our
constraint-based compression model addresses irrelevant
data in scientific datasets and effectively preserves the
global value ranges, which are critical to obtaining a high
compression quality in some cases.

We summarize the key contributions as follows.

� We propose a constraint-based error-bounded lossy
compression model; to the best of our knowledge,
this is the first attempt to develop such a model. The
user-specified constraints include (A) isolating irrele-
vant values, (B) preserving global value range, (C)
preserving multi-interval-based error bounds, (D)
preserving multiregion-based error bounds, and (E)
using a bitmap to mask complicated regions and
apply different error bounds on each region. These
constraints are critical to post hoc analysis of differ-
ent applications in practice.

� We develop a series of optimization strategies for
preserving constraints efficiently. Specifically, we
redesign the quantization stage in the SZ error-
bounded lossy compression framework.

� We perform a comprehensive evaluation using multi-
ple real-world scientific datasets across different
domains. Experiments show that our solution can
respect users’ constraints, while maintaining a high
compression ratio. Specifically, our solution can obtain

better visual quality or data fidelity in the lossy-recon-
structed data for different applications, with the same
compression ratios compared with the single error-
bounded compressor. Our experiments also demon-
strate a good scalability in compression time compared
with the parallel file system’s I/O cost.

The rest of the paper is organized as follows. In Section 2
we discuss related work. In Section 3 we first introduce the
SZ compression model and then discuss the five scientific
constraints posed by scientists across different domains. In
Section 4 we formulate the research problem based on the
SZ error-bounded lossy compression model. In Section 5 we
propose a battery of efficient algorithms to preserve the
user-required constraints and also optimize the compres-
sion quality and performance for different cases. In Section 6
we present our evaluation results. In Section 7 we summa-
rize our findings and conclude with a vision of future work.

2 RELATED WORK

Data compression is used widely in scientific research, for
example to reduce data storage and transfer size and costs.
Data compressors are typically split into two classes: loss-
less compression [19], [20], [21], [22] and lossy compres-
sion [5], [6], [12], [23], [24]. The former introduces no data
loss during compression, but it suffers from very low com-
pression ratios (generally 1.1-2 [25], [26]). The latter can
achieve very high compression ratios (such as 100+) [5], [6],
[12], [18], but potential data loss may distort analysis results.

To address the concern about data loss, researchers have
studied error-bounded lossy compressors for scientific data,
which can be split into twomajor categories – prediction-based
compression model and transform-based compression model.
SZ [6], [12], [18] is a typical prediction-based lossy compres-
sionmodel, which is composed of four key stages: data predic-
tion, linear-scale quantization, Huffman encoding and lossless
compression. ZFP [5] is a typical compressor designed based
on the transform-based model, which includes four key steps:
splitting dataset into fixed-size blocks, exponent alignment in
each block, orthogonal data transform for each block; and
embedded encoding for each block.

Existing error-bounded lossy compressors offer different
types of error bounds to address diverse user demands. The
most common error-bounding approach involves using an
absolute error bound, which ensures that the pointwise dif-
ference between the original raw data and reconstructed
data is confined within a constant threshold. Many com-
pressors such as SZ [6], [12], [18], ZFP [5], [27], and
MGARD [13] support absolute error bounds. Other error-
bounding approaches have been explored to adapt to
diverse user requirements. For instance, SZ supports point-
wise relative error bounds [28], [29]; and Digit Round-
ing [30], Bit Grooming [24], zfp [5], and FPZIP [23] support
a precision mode that allows users to specify the number of
bits to be truncated in the end of the mantissa, in order to
control the data distortion at different levels.

To satisfy user demands on a specific quality of interest,
researchers have recently studied how to respect some spe-
cific metrics. For instance, Tao et al. [31] developed a for-
mula that can link the target peak signal-to-noise ratio
(PSNR) metric to an absolute error bound setting in SZ such

1. We adopt the SZ compression framework because it provides
leading error-bounded lossy compression quality, as verified by several
studies of different scientific datasets [6], [12], [17], [18].
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that data can be compressed based on a user-specified
PSNR metric. MGARD [13] supports various norm error
metrics and linear quantities of interest in its multigrid com-
pression method. However, none of the existing error-
bounded lossy compressors allow users to set particular
constraints in the error-bounded compression and hence
impose a significant impediment on the practical use of
such compressors. In fact, users often have diverse precision
demands for various data value intervals or specific require-
ments on different spatial regions, which are determined by
their sophisticated post hoc analysis purposes and quanti-
ties or features of interest.

3 RESEARCH BACKGROUND

We describe the research background in this section, includ-
ing SZ compression model and diverse constraints in scien-
tific datasets.

3.1 SZ Compression Model

The error-bounded lossy compression model SZ is illustrated
in Fig. 1. As shown in the figure, the compression model is
composed of four key stages: prediction, quantization, Huff-
man encoding, and lossless compression. Given a set of raw
data, SZ scans the whole dataset (either pointwise [6], [12] or
blockwise [18]) to predict the data values. In a 1D dataset, the
prediction method is simply a first-order Lorenzo predic-
tor [12], which uses only the preceding value to approximate
the current data point. In a 2D or 3D dataset, SZ adopts a
hybrid data prediction method combining the first-order Lor-
enzo predictor (using three nearby values in the 2D Lorenzo
and 7 nearby values in the 3D Lorenzo) and a linear-regres-
sion-based predictor [18]. Such a hybrid predictor can signifi-
cantly improve the data prediction accuracy, which in turn can
substantially increase the compression ratio, especially when
the error bound is relatively large. The second stage in SZ uses
a linear quantization method to convert the distance between

the predicted value and original value to an integer number
(called the quantization code or quantization number) for each
data point. A customized Huffman encoder is then applied to
compress the integer quantization codes, followed by a lossless
dictionary coding (using Zstd [19] by default in SZ).

3.2 Diverse Constraints in Scientific Datasets

In this paper we propose a novel concept in the practical use
of error-bounded lossy compression—preserving diverse
constraints specified by users.

A constraint here is referred to as a particular condition that
must be applied during the error bounded lossy compression.
We describe five types of constraints that are commonly
required in real-world science applications (see Table 1)

Irrelevant (or Missing) Data. Scienfitic datasets are often
sparse, and missing data are often encoded in esoteric man-
ners. Specifically, we observe that some datasets (particularly
those generated by climate and weather simulations) often
contain extremely large values (such as 1E35) that are far from
the normal value range. These values are used to indicate
“missing” values or background information (such as coast-
line locations). Those data points need to be recorded in the
dataset for the purpose of post hoc analysis. However, these
data affect data smoothness in space, which may substantially
reduce data transform efficiency or prediction accuracy, signif-
icantly degrading the lossy compression quality.

Global Value Range. In some scientific datasets values out-
side a “normal” range may result in serious errors for post
hoc analysis. For instance, the temperature of liquid water
at one standard atmospheric pressure has a meaningful
value range, which is 0�C � 100�C. Any values outside this
range would cause incorrect post hoc analysis. For the exist-
ing error-bounded lossy compressors, however, the recon-
structed data could fall outside of the meaningful value
range. For example, if the error bound is 5�C, some of the
decompressed data values may reach up to 105�C or down
to -5�C, which is undesirable for water temperature.

Interval-Based Error Bound. In practice, post hoc analyses
often focus on specific value intervals within the whole
dataset. Thus, researchers may want to apply different error
bounds (or precisions) based on value intervals. For
instance, environmental scientists track the location of Hur-
ricane Katrina [33] by calculating the height of the water
surface (overly high water surface values indicate the loca-
tion of the hurricane at that moment). Accordingly, the
researchers care only about the data whose values are
greater than a threshold, such as 1 meter, in the simulation.
On the other hand, the decompressed data are supposed to
be confined within the original interval. In the Hurricane

Fig. 1. General procedure of constraint preserving error bounded lossy
compression: Constraint (A) is handled before the prediction step; con-
straint (B) is handled primarily in both the prediction and quantization
stage by replacing data points with Lorenzo-predicted values; con-
straints (C), (D), and (E) are addressed by designing a new quantization
method.

TABLE 1
Examples of User-Required Constraints Applied to Scientific Simulation Datasets

No. User-Required Constraints Examples Science Domains

(A) Isolating irrelevant value Hurricane Isabel [32], Katrina [33] Climate, Weather, etc.
(B) Preserving global value range CESM [1] Climate, etc.
(C) Preserving value-interval-based error bounds Katrina [33], NYX Weather, Cosmology, etc.
(D) Preserving multiregion-based error bounds CESM [1] Weather, Seismic imaging, etc.
(E) Preserving irregularly shaped regions QMCPACK, Miranda, CESM [1] Hydrodynamics, Weather, etc.
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Katrina simulation, for example, if the water surface thresh-
old is set to 1 meter, all the reconstructed data points whose
values are greater than 1 from the previously lower-than-1
raw values would be considered “false alarms,” which is
undesired by users.

Region-Based Error Bound. Different regions in a scientific
dataset may have different importance according to its
physical meaning. For example, CESM [1] records the cli-
mate change globally, and its data indexes refer to geoloca-
tions. Researchers making use of a specific scientific dataset
generally understand which spatial regions need to be stud-
ied. Thus, it is possible to set different error bounds across
different regions of the datasets so that specific regions of
interest can be kept at a high resolution to achieve necessary
data fidelity, while other regions can be less precise to
obtain a high compression ratio.

More Complex Error Bounds. While the above constraints
cover most real-world error bound requirements, some
applications have more complex and fine-grained demands.
For instance, geolocation-related datasets such as those in
CESM [1] may have sophisticated contours around lands
and oceans, and scientists may wish to have higher preci-
sion in land areas. In this case we allow users to mark a cus-
tomized 2D or 3D area and use a bitmap array to specify
different error bounds for every data point. We can also use
the bitmap to automate some region selection for users
based on the data patterns. By applying advanced bitmap
generation algorithm, our solution can preserve customized
diverse precisions for a dataset.

4 PROBLEM FORMULATION

In this section we formulate our diverse constraint error-
bounded lossy compression problem.

Given a scientific datasetD composed ofN floating-point
values (either single precision or double precision), the
objective is to develop an error-bounded lossy compressor
that can respect a set of user-defined constraints such as pre-
serving global value range or preserving multiple error
bounds based on value intervals or different regions in the
dataset.

Three assessment metrics are considered. The first two
are compression speed sc and decompression speed sd.
They are usually measured in megabytes per second: in
other words, the size (in MB) of the original dataset proc-
essed (either compressed or decompressed) per time unit.
The third metric is compression ratio (denoted by r), which
is defined as follows:

r ¼ N � sizeofðdataTypeÞ
Sizecompression

; (1)

where dataType can be either float or double and Sizecompression

is the total size after compression.
Our goal then can be formulated as Formula (2)

Maximize r

subject to user�required constraint: (2)

The user-required constraint refers to additional require-
ments applied to the lossy compression beyond the traditional

error-bounding constraint. We formulate the five constraints
listed in Table 1 as follows:

constraintðAÞ : Preserve and isolate di =2 ½Rmin;Rmax� (3)

constraintðBÞ : Preserve maxðbdiÞ ¼ highðrðDÞÞ
minðbdiÞ ¼ lowðrðDÞÞ

(
(4)

constraintðCÞ : jdi � bdij � eðdiÞ (5)

constraintðD;EÞ : jdi � bdij � eðLOCðdiÞÞ; (6)

where di 2 D denotes the ith data point in the original data-
set D, bdi is its corresponding decompressed value,
lowðrðDÞÞ and highðrðDÞÞ are the boundaries of the dataset
D’s value range rðDÞ, eðdiÞ denotes the user-required error
bound in terms of data point di’s value (i.e., user-specified
error bound in terms of the value interval that covers di),
LOCðdiÞ refers to the spatial location of the data point di,
and eðLOCðdiÞÞ denotes the user-specified error bound for
the specific region covering LOCðdiÞ. Constraints D and E
have identical formulas: the key difference is that E allows
irregular shapes, whereas D focuses on a regular shape
defined by a rectangular box or cube. We summarize all the
notation in Table 2.

We give an example to further illustrate how the research
problem is formulated in our work. As described above,
researchers using the Hurricane Katrina dataset to track the
path of the hurricane are concerned only with water surface
values above 1m. Based on Formulas (2) and (5), the target
is to maximize the compression ratio while ensuring that
the relatively higher values have lower error bound (e.g., if
di 	 1, then eðdiÞ ¼ 0:01; otherwise, eðdiÞ=0.1). Another
example is the Nyx cosmological simulation with a specific
quantity of interest, namely, dark matter halo information.
According to the Nyx analysis code [16], the dark matter
halo cells are computed based on a threshold located in the
interval of [80,85], which means that for any data point di in
[80,85], their error bounds eðdiÞ should be lower than eðdjÞ,
where dj refers to the data points that fall outside of the crit-
ical interval [80,85]. Such a multi-interval-based error bound
setting can eliminate the distortion of halo cells calculated
by the reconstructed data with the same compression ratios.
The details will be presented in Section 6.

TABLE 2
Key Notation

Notation Description

di original data value at position i
pi predicted value of di
d̂i reconstructed data value after decompression
rðxÞ value interval of data point x (di)
eðxÞ specified error bound based on a value interval

(x=rðdiÞ)
eðLOCðxÞÞ specified error bound based on the location

(x ¼ di)
lðxÞ length of some value range (x ¼ rðdiÞ)
low(rðx)) lower boundary of value interval rðxÞ
high(rðx)) higher boundary of value interval rðxÞ
q quantization index (i.e., quantization code)
qs shifted quantization number
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5 ERROR-BOUNDED LOSSY COMPRESSION

FRAMEWORK WITH DIVERSE CONSTRAINTS

We develop a constraint-based error-bounded lossy compres-
sion framework based on the SZ compression model [12]. In
the following textwe describe our design and how to optimize
the performance and quality on this foundation.

5.1 Handling Irrelevant Data

In order to handle the irrelevant values correctly and effi-
ciently, the first three stages in SZ (i.e., prediction, quantiza-
tion, and Huffman encoding) all need to be modified. The
details are as follows.

In stage 1 (data prediction), the key problem is to fill the
missing values for the irrelevant data points such that the
smoothness of the data will not be destroyed by irrelevant
values. This strategy can maintain a high prediction accu-
racy at each data point throughout the whole dataset. To
this end, we use the Lorenzo predicted values [12] to replace
irrelevant values. More specifically, for a 1D dataset, the
irrelevant data will be replaced by the values of their pre-
ceding data points (di  di�1); for a 2D dataset, di;j  di;j�1
+ di�1;j � di�1;j�1; and for a 3D dataset, di;j;k  di�1;j;k +
di;j�1;k + di;j;k�1 � di�1;j�1;k � di�1;j;k�1 � di;j�1;k�1 +
di�1;j�1;k�1. Fig. 2 illustrates how irrelevant values are modi-
fied in the prediction stage for a 2D dataset. As shown in
the figure, the irrelevant value is 1E35. When encountering
an irrelevant data point during compression, the values will
be estimated based on the Lorenzo predictor: for example,
1.29 1.25+1.27�1.23; 1.33 1.31+1.29�1.27).

After modifying the “irrelevant” data points, we propose
two strategies to preserve the irrelevant values during the
second stage of the compression pipeline.

� Strategy A: Since the irrelevant value is often a single
floating-point number (such as 1E35), we use a 1-bit
array to mark whether this is an irrelevant value for
each data point (1 indicates irrelevant value, and 0
indicates normal data).

� Strategy B: Use one quantization bin (such as bin #1)
from the quantization range to mark whether the
data point is an irrelevant value. Thus, there are
three types of quantization bins in this case: (1) quan-
tization bin #0 records the unpredicted data value as
usual [12], (2) quantization bin #1 marks the irrele-
vant data, and (3) the remaining quantization bins
are used to record the distance between the pre-
dicted value and original value.

Each of the two strategies has its own advantages and
disadvantages. Strategy A has no impact on the distribution

of quantization codes, so it can maintain high Huffman-
encoding efficiency on the quantization codes; but it suffers
from an overhead of storing the extra bit array. Strategy B
does not have such an overhead; but it may affect the distri-
bution of quantization codes to a certain extent, which will
inevitably lower the effectiveness of compressing the quan-
tization codes by Huffman encoder.

In the third stage (Huffman encoding), if the solution
adopts strategy A, we compress the 1-bit array using Huff-
man encoding. This compression may significantly lower
the overhead because irrelevant data points are generally a
small portion of the whole dataset and therefore the 1-bit
array is composed mainly of 0s (to be demonstrated in
Section 6.1).

5.2 Preserving Global Value Range

The simplest, yet suitably efficient, strategy for preserving the
global value range is to include the original value range infor-
mation as metadata in the compressed data. During decom-
pression, when a reconstructed data value outside the
“original value range” is found, the algorithm will replace it
with either the minimum value or maximum value of the
value range. This strategy introduces little computation over-
head in the compression stage because we need only to scan
the dataset to find the maximum and minimum values, a pro-
cess we refer to as “preprocessing” in our evaluation. During
decompression, a small computation overhead (generally
�10% in our experiments) may be introduced by this strategy,
because the algorithm needs to check each data point to deter-
minewhether the reconstructed value falls outside of the origi-
nal dataset’s value range. If so, it would be substituted by
either themaximumorminimumvalue.

5.3 Preserving Multi-Interval Error Bounds

Wedefine an array of triplets, each containing the low, high, and
error bound. Fig. 3 illustrates our fundamental idea using a sim-
plified diagram with relatively large error bounds. In this
example the user specifies different error bounds for four value
intervals: ½�100; 0Þ, ½0; 14Þ, ½14; 38Þ, and ½38; 238Þ; the error
bounds are 10, 1, 3, and 50, respectively. We then apply

Fig. 2. Illustration of how irrelevant data values are cleared in a 2D
dataset.

Fig. 3. Multi-interval error bound model. This example shows a few exag-
gerated error bounds in each range for simplicity of description: each
rectangle represents twice the error bound in that range, and the ranges
are tightly connected. The error bound will usually be smaller in practice,
and each range may contain hundreds or thousands of error bounds.
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different quantization bins (whose length is twice the error
bound) in different intervals. As illustrated in the figure, each
square denotes a quantization bin in its corresponding value
interval. Our algorithm calculates the total number of varied-
length quantization bins involved between the predicted value
and the raw value during the compression and identifies the
quantization bin based on the error bounds during the
decompression.

Before describing our solution in detail, we review the nota-
tion. Let di denote the original data value at position i. Let pi
denote the predicted value for di. We use R to denote the
radius of the quantization bin (for instance, if there are 65:536
quantization bins, the radiusR is equal to 32768). Let d̂i denote
the decompressed data value. Let rðxÞ be a function that
returns a value interval index based on a given data value
x=di. Let eðxÞ be a function that returns the user-specified error
bound based on a given value interval (x=rðdiÞ). Let lðxÞ
denote the length of some value interval based on the interval
index (x ¼ rðdiÞ). Let low(rðx)) and high(rðx)) denote the low
boundary andhigh boundary of the value interval rðxÞ, respec-
tively. Let q denote the quantization code, and let qs denote the
shifted quantization number.2 We summarize the notation in
Table 2 in order to help understand the following text.

Algorithm 1. Multi-Interval Quantization in Compres-
sion Stage

Input: user-specified intervals and error bounds "
Output: compressed data stream in form of bytes
1: for each data point di do
2: Use the composed prediction that combines Lorenzo

predictor and linear regression predictor to obtain a
prediction value pi.

3: Ip rðpi). /* Obtain interval index of pi */
4: Id rðdi). /* Obtain interval index of di */
5: if Id ¼¼ Ip then
6: q roundððdi�piÞ2eðIdÞ Þ./* Quantized distance between di &

pi. */
7: else if Id > Ip then
8: t ¼PId�1

i¼Ipþ1
lðiÞ
2eðiÞ. /* Count bins for middle intervals. */

9: tp ¼ roundðhighðIpÞ�pi2eðIpÞ Þ. /* Get quantized distance for Ip.
*/

10: td ¼ roundðdi�lowðIdÞ2eðIdÞ Þ. /* Get quantized distance for Id.
*/

11: q ¼ tþ tp þ td. /* Get the logic quantization code. */
12: else
13: t ¼PIp�1

i¼Idþ1
lðiÞ
2eðiÞ. /* Count bins for middle intervals. */

14: tp ¼ roundðhighðIdÞ�d2eðIdÞ Þ. /* Get quantized distance for Id.
*/

15: td ¼ roundðpi�lowðIpÞ2eðIpÞ Þ. /* Get quantized distance for Ip.
*/

16: q ¼ tþ tp þ td. /* Get the logic quantization code. */
17: end if
18: qs q + R. /* Shift quantization code. */
19: end for

As illustrated in Fig. 3,wedesign amulti-interval quantiza-
tion method that calculates the total number of quantization

bin indices based on the varied-length quantization bins, fol-
lowed by other compression techniques including Huffman
encoding and dictionary encoding (Zstd). Algorithm 1
presents the pseudocode of the multi-interval quantization in
the compression stage.

For each data point, we must deal with three relation-
ships between the original raw value di and its predicted
value pi: (1) rðdiÞ ¼ rðpiÞ: they fall in the same interval; (2)
rðdiÞ < rðpiÞ: the predicted data are in some range ahead of
the original data; and (3) rðdiÞ > rðpiÞ: the predicted data
are in some range before the original data.

Situation 1 (lines 5�6): If the original raw value di and the
predicted value pi fall in the same interval (< nbw >
i:e:;< =nbw > rðdiÞ ¼ rðpiÞ), the quantization problem falls
back to the traditional linear-scale quantization [12]. Specifi-
cally, we can use the following formulas to compute the logic
quantization code and decompressed data.

q ¼ roundð di � pi
2eðrðdiÞÞÞ (7)

d̂i ¼ pi þ 2eðrðdiÞÞ � q: (8)

We use an example to illustrate how the linear-scale quanti-
zation works. Suppose the error bound (i.e., eðrðdiÞÞ) is 20
and we have di=�74, pi=�95. Then di � pi ¼ 21 and q ¼
roundð21=40Þ ¼ 1. The decompressed value d̂i is �75, whose
distance to the raw value is less than the error bound.

Situations 2 and 3 (lines 7�17): These correspond to the situ-
ation where the raw value di and its predicted value pi fall in
different value intervals (i.e., rðdiÞ 6¼ rðpiÞ). In the following
text, we describe the situation with rðdiÞ > rðpiÞ (i.e., lines
7�11 shown in the algorithm); the other situation is similar.

The fundamental idea in handling this situation is to adjust
the quantization policy to use various bin lengths or sizes in
different value intervals. Specifically, we count the quantized
distance (i.e., the number of quantization bins) from the pre-
dicted value to the original raw value. Whenever the counter
crosses a different interval, we continue to add the quantiza-
tion bins from the boundary of the new interval. As illustrated
in Fig. 3, suppose the predicted value is located at -10 and the
original value is 100. Then the calculation of the quantization
bins involves all the value intervals, and the quantization code
is 1+7+4+1=13. The decompressed data would be (38+238)/
2=138. Obviously, the decompressed data value is determined
mainly by the last value interval and its quantization bin size.
The formula for reconstructing the decompressed value is
given below (we assume the raw data valuw is greater than
the predicted value,without loss of generality):

qt ¼ round

�
di � lowðrðdiÞÞ � eðrðdiÞÞ

2eðrðdiÞÞ
�

(9)

d̂i ¼ lowðrðdiÞÞ þ eðrðdiÞÞ þ 2eðrðdiÞÞ � qt: (10)

Now we describe the decompression in Algorithm 2. The
algorithm proceeds by executing similar operations to the
compression process but in reverse order to obtain the
decompressed data from a predicted data value and the cor-
responding quantization bins. As shown in the pseudocode,
we first calculate the number of quantization bins for each
value interval (line 3�5). We then decompress each data
point based on the multi-interval quantization (lines 6�34).

2. Since the C array has no negative index in an array, the logic
quantization bins [-R,R] need to be shifted to [0, 2R] in our
implementation.
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If the raw data value is lower than the predicted value (i.e.,
qj < 0), the code will scan all the involved value ranges
downward (lines 10�29). Lines 25�29 refer to the situation
where the predicted value and original raw data value fall
in the same interval. Lines 13�23 deal with the other situa-
tion where the two data values fall in different intervals.

Algorithm2.Multi-Interval Quantization in Decompression

Input: compressed data stream
Output: decompressed data stream in the form of bytes
1: Read value intervals and error bounds in the header and

initialize multi-interval quantizer.
2: Read the quantization bins and unpredictable data.
3: for each interval index Ii do
4: l̂i =

lðIiÞ
2eðIiÞ . /* Calculate # quantization bins for each interval */

5: end for
6: for each decompressed data position j do
7: Use the composed prediction that combines Lorenzo pre-

dictor and linear regression predictor to obtain a predic-
tion value pj.

8: qj = qs � R. /* Get the logic quantization code qj */.
9: Ip rðpj). /* Obtain range index of pj */
10: if qj < 0 then
11: D pj � lowðIpÞ /* Compute pj’s distance to the low bo-

undary */
12: D̂ roundðD=2ðeðIpÞÞÞ /* Compute quantized distance

*/
13: if qj þ D̂ < 0 then
14: for i from Ip � 1 to 1 do
15: if qj þ l̂i 	 0 then
16: d̂j  highðiÞ � eðiÞ þ ðqj+1)�ð2 � eði)). /* Get deco-

mpressed data */
17: if d̂j < lowðiÞ then
18: d̂j  lowðiÞ þ eðiÞ. /* Correct decompressed data

*/
19: end if
20: else
21: qj  qj þ l̂i. /* Add quantization length for further

search */
22: end if
23: end for
24: else
25: d̂j  pj þ qj � 2 � ðeðIpÞÞ. /* Compute decompressed

value */
26: if d̂j < lowðIpÞ then
27: d̂j  lowðIpÞ þ eðIpÞ. /* Perform correction to av-

oid undesired boundary-crossing */
28: end if
29: end if
30: else if qj ¼¼ 0 then
31: d̂j  pj. /* The prediction is accurate, directly use the

predicted value */
32: else if qj > 0 then
33: Calculate the decompressed data using similar methods.

/* For brevity we do not include details here. It is simi-
lar to the case when qj < 0, with just a few changes to
the low and high bounds and some calculation differen-
ces. */

34: end if
35: end for

Note that we need to deal with the edge situation care-
fully. For instance, when the original data are near the high

or low bound of an interval, the quantization value in this
final interval might be equal to quantRange½i�, causing the
decompressed value to be in the next interval unexpectedly.
In this case we shift the quantization by 1 in the compres-
sion stage to ensure that the decompressed data and origi-
nal data are in the same interval.

5.4 Preserving Multiregion Error Bounds

Sometimes it is not apparent how to set different error
bounds for different value intervals in a dataset; however,
one usually knows which regions are likely to be interesting
and thus require higher precision than others. For instance,
in the CESM [1] dataset, the data indexes correspond to the
geolocations, and some regions are more important than
others for particular analyses (e.g., oceans, continents).
Fig. 4 illustrates our approach enabling users to mark inter-
esting regions that we then use to apply a tighter error
bound on each region according to the requirement and pre-
knowledge of the data distribution.

To reduce the overhead in (de)compression time, we do
not assign a region to each data point; instead, we consider
each intrablock of data in the same region. To make the
algorithm simpler, we adopt the intrablock of size 6
6
6
for 3D data, which is consistent with SZ’s linear regression
prediction block size [18]. The undesired side-effect of this
method is that the user-customized region (a regular box)
may cut through some intrablocks. Since the data have to be
compressed/decompressed in the unit of blocks (e.g.,
6
6
6 for 3D data), some storage overhead occurs at the
edge of the customized region. We consider this storage
overhead acceptable because the region of interest is rela-
tively large in practice (at a scale of several thousands)
while the block size is far smaller (such as 6
6
6). Keep in
mind that the purpose of proposing this region-based

Fig. 4. Constraint(D) region selection for 1D, 2D, and 3D data: In 3D
cases, each region can be specified with seven parameters: the starting
positions (3 parameters), the length of each direction (3 parameters),
and the error bound (1 parameter).
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algorithm is to reduce the compressed data size while pre-
serving precision for post hoc analysis.

The whole process can be done in the quantization stage
if the predictor is fixed, since the varied error bounds will
take effect only when calculating the quantization code.
However, when we compose the linear regression predictor
and Lorenzo predictor together, the data sampling process
will need a correct error bound to select an optimal predic-
tor for the current block. The varying error bounds can
cause the predictor selection to yield a bad result. This chal-
lenge exists in all kinds of blockwise compression where
predictors may change according to the error bound for
each block. We will describe the solution in detail in
Section 5.6.

5.5 Preserving Irregular Regions by Bitmap

To satisfy complex, customized regions of error bounds
(rather than just rectangles or cubes), we introduce a bitmap
error bound array (as shown in Fig. 5). It contains a set of
integer values that indicate different data distortion levels,
each of which corresponds to a specific error bound value.
Such a method allows users to specify an error bound for
each data point. However, it is not realistic to manually
assign each data point an error bound, since there are usu-
ally millions of data points. Instead, users can use third-
party software to mark a customized shape in a picture or
apply computer vision techniques to obtain contours that
distinguish regions (e.g., land and ocean). Such a custom-
ized-marking option is more accurate and flexible in prac-
tice especially in geolocation-related research (to be
demonstrated later).

Although using bitmaps supports the most complex
error bound settings—allowing each data point to have its
own error bounds—cases rarely require many different
error bounds to coexist in one dataset in practice. Most
requirements are limited to a few different error bounds in
total, because of coherence of data in space; for example,
“higher precision may be required near the hurricane cen-
ter” or “land areas need higher precisions than ocean
areas.” Therefore, we use one byte to represent all different
types of error bounds. That is, we use a byte array to store
the index of error bound for each data point and apply
Huffman coding and lossless compression to compress the
bitmap array if needed. In the extreme case, the original sin-
gle error bound would be equivalent to an all-zero bitmap,
which would bring almost zero overhead after proper com-
pression. The overhead of using a bitmap array will be pre-
sented in Section 6.

The bitmap solution solves a complicated error bound
requirement (actually, all possible error bound require-
ments) and presents an opportunity for automated error
bound selection, which may relieve scientists of having to
configure advanced bitmap generation algorithms. This
solution can also have additional global advantages com-
pared with the region-based method when different error
bounds are distributed evenly across the dataset. By setting
a fixed proportion of data points with some certain error
bounds, we can achieve higher compression ratio, lower
root mean squared error, and comparable visual quality
(the result will be presented in Section 6).

5.6 Artifact Removal in Multiprecision Compression

The above three multiprecision compression methods may
cause undesired artifacts because of their blockwise design.
As demonstrated in Fig. 6, the two-precision setting
(eb1 ¼ 20 at ocean and eb2 ¼ 10 at land) has worse visual
quality in the land area (with prominent stripe-pattern arti-
facts) than does a uniform (eb ¼ 20) setting. The root cause
is due to the was SZ compresses the data. Specifically, SZ
splits each dataset into many small blocks (e.g., 6
6
6 for
3D) and selects the better predictor between Lorenzo and
linear regression based on the sampled data points. In gen-
eral, the Lorenzo predictor may work well when the error
bound is relatively low, however it is not as effective as lin-
ear regression when the error bound is high [18]. Therefore,
the Lorenzo predictor would tend to be selected in each
block at relatively low error bounds. Based on our observa-
tion, the artifacts shown in Fig. 6 A are typical and are

Fig. 5. Illustration of bitmap error bound setting: Use an index to repre-
sent the error bound for each data point, and use a separate array to
store all possible error bounds.

Fig. 6. Multiprecision compression problem: In (A), although the RMSE
and PSNR behave normally, the continuity of the visualization seems to
be broken compared with a lower-precision setting in (B). The block size
for the 2D dataset is 32 in SZ3; if we change it to 64, we can obtain the
visualization shown in (C).
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common to the Lorenzo predictor when the error bound is
high. This can be verified in Fig. 6 C, in which the corre-
sponding land area is using a linear regression predictor
instead of Lorenzo predictor because of increased blocksize
(from 32 to 64). Although increasing the blocksize can miti-
gate the artifact issue to a certain extent, the linear regres-
sion predictor may have an oversmooth visualization issue
in the corresponding blocks when the error bound is overly
large, which may cause undesired block pattern artifacts, as
shown in Figs. 6 B and 6 C. Moreover, the compression ratio
is also degraded (compare Figs. 6 A versus 6 C), which is
undesired.

To overcome the artifact issue, we apply a new predictor—
called interpolation—that works well in situations with high
user-required error bounds. Specifically, instead of handling
the data block by block, the interpolation-basedmethodworks
level by level and handles every dimension in a unified pat-
tern. This interpolation-based predictor may have much
higher prediction accuracy than the linear regression predictor
especially at high error bounds. Details about this interpola-
tion-based compression method can be found in our prior
work [34]. In this work we combine our multiprecision design
for the linear quantization stage with the interpolation-based
predictor, which can thus resolve the artifact issue. We evalu-
ate thismethod in the following section.

5.7 Summary of Proposed Methods and Their
Potential Use Cases

In this section, we proposed five constraints along with
three multiprecision compression techniques. We will sum-
marize their characteristics and potential use cases below.

Irrelevant data will almost always need to be cleaned
with some method when existing. Global range should also
often be respected because otherwise certain post-hoc anal-
ysis including color heatmap will render visually different
results compared to the original data. Therefore, we
consider these two constraints basic requirements and
universally applicable for many datasets.

As shown in Table 3, the three multiprecision compres-
sion methods allow users to set different error bounds for
different parts of data, but they have varied characteristics.
In summary, the multi-interval method is suitable when
value ranges have varied importance to users; the multire-
gion method targets at those scenarios where interesting
data are in rectangular regions; the irregular region method
is useful in geographical data with complicated boundaries.

6 EXPERIMENTAL EVALUATION

In this section we use multiple real-world simulations to
evaluate our multiprecision compression methods, and we
compare the compression quality and performance with the
global constant error-bounded lossy compressor SZ, which
has been verified as one of the best error-bounded lossy
compressors in most cases.

We evaluate our approaches on datasets generated by
seven scientific applications: QMCPACK [35], RTM [36],
Miranda [37], CESM [1], Nyx [16], Hurricane Isabel [32],
and Hurricane Katrina [33], as presented in Table 4.

All time measurements are performed on the Argonne
Bebop Machine, which is a HPC cluster managed by Labo-
ratory Computing Resource Center (LCRC) at Argonne
National Laboratory. It is equipped with 1200+ broadwall
nodes (Intel Xeon E5-2696v4), each having 36 cores with a
total of 128 GB DDR4 memory.

The two quantities we used to measure the data quality are
RMSE and PSNR, and we will briefly introduce their meaning
below. The root-mean-square error (RMSE) is a frequently
used measure of the differences between values. We calculate
themean error between the decompressed data values and the
original values to understand how much error the compres-
sion algorithm brings into the data. The term peak signal-to-
noise ratio (PSNR) is an expression for the ratio between the
maximum possible value (power) of a signal and the power of
distorting noise. PSNRwill not be severely affected by the data
ranges, and we can have a universal understanding of how
good the data is.

TABLE 3
Summary of the Proposed Methods

Constraint Features Pros Cons

Multi-
interval

Allow different error bound
settings for different value

intervals

Obtain higher precision for interesting
ranges without decreasing compression

ratio much

When setting many ranges, the data near each range
boundary may be distorted more, especially if the error

bound is large
Multiregion Allow different error bound

settings for multiple regular
regions

Require quite minimummetadata to
represent each region

Cannot represent complicated boundary; Only
rectangular regions can be represented

Irregular
Region

Allow fully customizable error
bound settings for each data

point

Represent all kinds of regions, fully
customizable

Require a bitmap that is of the same dimensions as the
original data, extra space cost

TABLE 4
Basic Dataset Information

Dataset # Fields Dimensions Science

QMCPACK 1 33120
69
69 electronic structure of
atoms, molecules, and

solids
RTM 1 449
449
235 Electronic
Miranda 7 256
384
384 hydrodynamics code for

large turbulence
simulations

CESM 79 1800
3600 Climate
Nyx 6 512
512
512 Cosmology
Hurricane
Isabel

13 100
500
500 Weather

Hurricane
Katrina

1 162
417642 Weather
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6.1 Preserving Irrelevant Data (Constraint A) and
Global Value Range (Constraint B)

The Hurricane Isabel dataset contains irrelevant data values
marked as 1E35, which is well outside the normal value
range. Table 5 shows the value range for five of 13 fields in
the dataset which contain irrelevant (or missing) data
points. The reason for the missing values is that the data
simulates an actual event (a hurricane) and, in the locations
where there is ground, no meaningful wind speed or pres-
sure is recorded. More information about the dataset is
available on the website.3

Fig. 7 shows the distribution of data points in theHurricane
Isabel dataset. Because the actual value of the irrelevant data is
far too large to be put in the same figure with normal data, we
use a made-up value that is outside the range of each field to
represent the irrelevant value. We can see that every field con-
tains a non-negligible amount of irrelevant data, although not
asmany as normal data points.While the amount of irrelevant
data is small, such data may severely harm the overall com-
pression ratio because they are mixed among normal data
points, destroying the continuity of normal data. We verify
this statement by sampling a random continuous portion of
the temperature field, as shown in Fig. 8.

Fig. 8 clearly shows that irrelevant data are distributed
among normal data, destroying the smoothness of the data
space. Obviously, if we predict a normal data point using
the irrelevant data value, the prediction cannot be precise.
As lossy compressor designers, we want to preserve irrele-
vant data values while mitigating their influence on the
compression ratio. Note that even though they appear to be
irrelevant for compression, they carry potentially useful
information—in this case, they indicate ground locations.

In Fig. 9, we investigate five different ways of handling
irrelevant data. Time is measured on Bebop. The five strate-
gies are: Ignore treats all irrelevant data as normal data; Zero
replaces all irrelevant data by 0 for simplicity; Clear replaces
all irrelevant data using the Lorenzo predictor based on their
nearby values (our solution); Quant and Bitmap indicate the
storage algorithm: Quant refers to using one additional quan-
tization bin tomark irrelevant data, and Bitmap indicates that
we use a bit array containing 1 and 0 to indicate whether each
data point is an irrelevant value or not. Fig. 9 A shows that
handling the irrelevant datamay double the compression and
decompression time. The overhead is due primarily to

additional traversing of the whole dataset to find, clean, and
recover irrelevant data. Moreover, constructing additional
Huffman trees for irrelevant data will add additional time to
the compression and decompression. Fig. 9 B shows that han-
dling irrelevant data is generally better than ignoring them;
however, it is difficult to determinewhether it is better to clear
themwith the Lorenzo predictor or simply convert them to 0.
Moreover, the simple bitmap method and quantization
method exhibit similar performance. The likely reason is that
irrelevant data are only a very small portion of the entire data
and thus themethods are unable to demonstrate a hugediffer-
ence in terms of the overall compression ratio. We conclude
that in this scenario the quantization strategy slightly outper-
forms use of a bitmap.

TABLE 5
The 5 Fields Tested in the Hurricane Dataset

Field Description Value Range

P Pressure (weight of atmosphere
above a grid point)

-5471.8579/3225.4257

TC Temperature (Celsius) -83.00402/31.51576
U X wind speed (positive means winds

from west to east)
-79.47297/85.17703

V Y wind speed (positive means winds
from south to north)

-76.03391/82.95293

W Z wind speed (positive means
upward wind)

-9.06026/28.61434

Fig. 7. Data distribution of the five fields in the hurricane dataset. The
irrelevant data value is 1E35. To visualize it in the distribution figure, we
modify the big value to a made-up outside value that is not in the normal
data range.

Fig. 8. Temperature data points with (left) and without (right) irrelevant
data. We show only a sample of 10,000 points (between index 50,000
and 60,000 in the original dataset). We observe the data points in the
given index range and can see that the irrelevant data is mixed among
the normal data points, harming data continuity; after clearing them with
the Lorenzo predictor, the separating effect disappears.3. http://vis.computer.org/vis2004contest/data.html
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The global range constraint is the easiest one to deal with,
which requires only a scan in the preprocessing stage to obtain
themax andmin value.After the decompression, an additional
traverse will be sufficient to pull back those few points whose
values are beyond the min or max value. The time overhead is
nearly negligible, as indicated in the gray bar in Fig. 9 A.

6.2 Multi-Interval Error-Bounded Compression
(Constraint C) Based on Visual Quality

Figs. 10 and 11 show the substantial advantage of our multi-
interval error bound-based compression over the traditional
constant error-bounded compression, using two datasets
(QMCPACK and Miranda). Specifically, the multi-interval-
based compression preserves higher visual quality for the
value intervals of interest, while achieving the same or even
higher overall compression ratios by lowering precision on
insignificant value intervals. For instance, in the QMCPACK
dataset, over 90% of the data points are located around 0, but
they are smooth and easy to be predicted by neighboring data
points; however, the data points with values in the interval of
½�8;�5� are the sparse interesting values that are harder to be
predicted accurately. That is, they are more important to pre-
serve the overall visual quality because the distortion of their
values is easier to observe in the visualization image.

Our method grants a tighter error bound and thus a higher
precision in the more important value intervals, while allow-
ing more distortion in insignificant value ranges, such that the
overall compression ratio is not degraded. Detailed evaluation
results are shown in Tables 6 and 7. Given similar compression

Fig. 9. Performance of irrelevant data-handling methods: all methods
slightly improve the compression ratio with a cost of longer compression
time and decompression time.

Fig. 10. QMCPACK data: (A) The basic method is setting one error
bound for the global range. We can see obvious artifacts in the blue
area. (B) Applying our multi-interval algorithm, we focus on the interest-
ing range [-8,-5) and give it a tighter error bound 0.15 while leaving other
ranges a higher error bound 1. We can see fewer artifacts, while the
compression ratio is kept the same as the global range method. Com-
pared with the original data shown in (C), we can see that the data in the
interesting range have better visualization results.

Fig. 11. Miranda density slice No. 120. Comparing B with A, we can see
that not only can the multi-interval solution preserve a high precision at a
value range of interest with high compression ratio, but it also prevents
the blue regions from getting distorted.
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ratios, our method can achieve lower RMSE and higher PSNR
in the critical value interval.

6.3 Multi-Interval Error-Bounded Compression
Based on Post Hoc Analysis in Nyx
Cosmological Simulation

We now consider compression of the Nyx cosmological simu-
lation with a specific quantity of interest (i.e., dark matter halo
cell information). Dark matter halos play an important role in
the formation and evolution of galaxies and consequently in
cosmological simulations. Halos are overdensities in the dark
matter distribution and can be identified by using different
algorithms; in this instance, we use the friends-of-friends algo-
rithm [38]. For the Nyx simulation, which is an Eulerian simu-
lation instead of a Lagrangian simulation, the halo-finding
algorithm uses density data to identify halos [39]. For decom-
pressed data, some of the information can be distorted from
the original, such as halo cells and halomass.

Fig. 12 demonstrates that setting different error bounds
for different value intervals in Nyx simulation datasets can
preserve the features of interest (i.e., halo cells in this exam-
ple) better than global-range error-bounded compression
can. The key reason is that according to the Nyx halo analy-
sis code, the values in the range of [81,83] need to be
extremely precise (the reason is related to the sophisticated
physics, and we ignore the details here). For our compres-
sion task, we set three value ranges and assign a smaller
error bound (0.1) to the data in the range of [81,83]. In this
way the overall compression ratio will be higher with less
distortion on the halo visualization result, as shown in
Fig. 12.

Table 8 shows the substantially higher precision of our
multi-interval error-bounded compression over global-
range error-bounded compression. We use RMSE of cell
number differences of halos and RMSE of mass differences
of halos in comparison with original data as two main met-
rics to evaluate the results. Specifically, when passed
through the post hoc analysis, our multi-interval solution
can lead to significantly lower RMSE for cell number and
halo mass, compared with the original RMSE under the
global-range error-bounded compression.

6.4 Multi-Interval Error-Bounded Compression
Using Hurricane Katrina Simulation

We now investigate the combination of our methods on the
Hurricane Katrina dataset. The combined methods include
handling irrelevant data, multi-interval error bound settings,
and different predictor settings (Lorenzo/linear regression).

Hurricane Katrina was one of the most devastating
storms in the history of the United States because of its
resulted significantly high storm surge (over 10 meters on
the Mississippi coast) and high velocity. To model Katrina,
the area was discretized into 417,642 nodes forming 826,866
unstructured meshes. The simulation was performed with a
1-second time step, from 18:00 UTC August 23 through
12:00 UTC August 30, 2005. The output hourly water eleva-
tion data downloaded from the ADCIRC website (adcirc.
org) was used in this study, and the water elevation contour
map with a 1-meter interval at four times—3:00 am and
17:00 pm UTC August 28 and 3:00 am UTC and 14:00 pm
UTC August 29—was plotted for illustrative comparison.

Katrina caused water elevation, and we wish to preserve
more precisely the information about the elevation data that
are above 1 meter (the multi-interval constraint). Moreover,
some data points do not have meaningful values in this
dataset and are represented by -99999 (irrelevant data).
Therefore, we need to treat these values properly to mitigate
their influence on the compression performance. By consid-
ering both irrelevant data and multi-interval error-bound
constraints, the compression quality (as shown in Fig. 13)
can be improved significantly compared with the original
compression quality under the state-of-the-art SZ 2.1; see
Figs. 13 D and 13 E versus 13 B and 13 C.

6.5 Multiregion Error-Bounded Compression
(Constraint D) Based on Visual Quality

To demonstrate the power of the region-based compression
method, we perform a post hoc analysis of three regions in
the QMCPACK dataset: slices 200, 300, and 400. Since each
slice will usually be observed in one analysis step, it is better

TABLE 6
QMCPACK RMSE & PSNR Comparison

Method Range eb RMSE PSNR

[-17, -8] 0.232 43.067
Global Range [-8, -5] 0.4 0.233 43.041
CR=210 [-5, 17] 0.051 56.159

[-17, -8] 1.0 0.538 35.747
Multi-Intervals [-8, -5] 0.15 0.086 51.623
CR=210 [-5, 17] 1.0 0.089 51.354

TABLE 7
Miranda Density RMSE & PSNR Comparison

Method Range eb RMSE PSNR

[0.5, 1.4] 0.012 44.804
Global Range [1.4, 2] 0.07 0.036 34.801
CR=206 [2, 3.5] 0.015 42.379

[0.5, 1.4] 0.1 0.013 43.5813
Multi-Intervals [1.4, 2] 0.05 0.027 37.193
CR=207 [2, 3.5] 0.1 0.018 40.682

Fig. 12. Nyx halo cell visualization: The fallback method sets a global
error bound to be 0.5, and the compression ratio is 75. Our solution (C)
sets three ranges: [min, 81) with error bound 1, [81, 83) with error bound
0.01, and [83, max) with error bound 1, and the compression ratio is 78.
In the visualization, our multi-interval solution (C) has cells almost identi-
cal to the result using the original data, while the fallback method (B)
shows some distortion, and the cells’ position and number are not identi-
cal to (A).
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to set a suitable error bound for each slice instead of using a
uniform error bound. For example, an error bound of 0.001
might be suitable for a slice with the data value range [-0.5,
0.5] but would be too large for a slice with range [-0.0025,
0.0005]. In Fig. 14, we can see significant distortion in the
selected regions in (C) even though the error bound is gen-
erally small (0.01) for the whole dataset. Our solution
improves the quality by applying tighter error bounds on
the three regions/slices. The compression ratio may not
drop clearly, because the “tight-error-bound regions” are
small compared with the global dataset.

In addition to addressing some chosen slices with specific
regions, the region-based compression algorithm can achieve
the effect of “different precisions for different areas” in each
slice. As shown in Fig. 15, the left-bottom corner hasmuch bet-
ter visual quality than the other corners. With these two exam-
ples, we demonstrate the flexibility and locality of this region-
based compression algorithm. In general, setting some small
regions for some parts of the data that are of interest to the
researchers will not influence the global compression quality.
Moreover, researchers can set any number of regions in any

parts of the dataset. Although it does not make sense to set
hundreds of regions to select every possible interesting data
points, the region-based algorithm offers the flexibility to
accommodate complex requirements and demands.

The feature of being able to set “different precisions for
different areas” is extremely useful in climate data. Scien-
tists and policy makers from different nations may share
the same global climate data while focusing on their own
country’s details. We use the CLDHGH field in the CESM
dataset to exemplify this feature. Since the dataset has a
tight value range and the neighboring values are smooth, it
is hard to visualize the difference directly between the
decompressed data and the original data in a small picture.
We calculate the difference between each data point and
visualize the difference instead. In Fig. 16 B, we can clearly
see that the data inside the region (circled by a red rectan-
gle) are much more precise than in the other areas since
there are almost no artifacts in the difference image. In
reaching the desired precision for the regions of interest, the
region-based method clearly outperforms the traditional SZ
compressor.

We also evaluate the (de)compression time overhead of
both multi-interval and multiregion methods. The overhead
of the multiregion method is proportional to the number of
regions, since each block needs to check the region list to
find which region it belongs to. In contrast, the overhead of
the multi-interval method is highly related to the precision
of the prediction. To make the performance measurement
as fair as possible, we use the same error bounds for all
regions and value intervals on 6 datasets, and we set 5 dif-
ferent regions/intervals for each compression to guarantee
that the overhead is observable.

TABLE 8
Comparison of Different Range Settings

Method RMSE of cell number RMSE of halo mass

Fallback-0.01: 0.089 125.84
Fallback-0.5: 2.820 429.26
Multi-interval: 0.198 135.41

Fallback sets only a global error bound (here 0.01 and 0.5). Multi-interval uses
our multi-interval error-bounded compression with three error bounds ([min,
81)=1, [81, 83)=0.01, and [83,max)=1)

Fig. 13. Hurricane Katrina data: Each row is a frame of the Katrina simulation: (1) is frame 120, (2) is frame 130, and (3) is frame 141. Each column repre-
sents a different setting of ranges and error bounds. Most of the blue data points in the graphs are close to zero. Byapplying a global rangewith error bound
to be 0.01 with our solution, the visualization is almost identical to the original data’s, and therefore we use one column (A) to demonstrate the visualization
result as a reference. The fallback version shown in (B) is to use the original 1D SZ compressor, which has only the Lorenzo predictor and does not handle
the irrelevant data; thus it has the lowest compression ratio evenwith a higher error bound 0.1. “Composed” in (C) and (D) meanswe use a composed Lor-
enzo and linear regression predictor to predict values. “Lorenzo” in (E) means we use only the Lorenzo predictor with no linear regression. Comparing (B)
and (C), our solution wins on the global range test by handling the irrelevant data and using the composed predictor (both Lorenzo and linear regression).
Comparing (C) and (D), our multi-interval solutionwins in both the compression ratio andvisualization result. Comparing (D) and (E), we can further improve
the compression ratio by using the Lorenzo predictor only and allowing some distortion in the deep blue area.
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The compression tasks are performed on the Bebop bdwall
partition with a single node, and we record the average of 10
runs for each compression configuration. As shown in Fig. 17
and Table 9, the compression time overheads of both the
multi-interval method and region-based method are not very
high. The region-based method has slightly smaller overhead
compared with the multi-interval method. The main reason is
that our region-basedmethod does not follow a point-to-point
evaluation; instead, we stipulate each intrablock of the same
region, cutting down considerable unnecessary computation.
The same approach cannot be applied to the multi-interval
method because we cannot assume neighboring points to be
in the same value interval: actually, they are likely to be in two
different value intervals specified by the user. To summarize,
both methods lead to a certain compression time overhead,
while the overheads are confinedwithin an acceptable range.

6.6 Bitmap-Specified Error Bound Compression
(Constraint E)

A bitmap defines the most concrete error bound information
since it specifies an error bound for each data point. The

overhead of storing a bitmap is non-negligible if not properly
compressed. In the following, we evaluate two methods for
storing the bitmap-specified error bounds: (1) the bitmap array
is background information that is stored separately by users as
metadata (e.g., the worldmap); and (2) the bitmap needs to be
storedwith compressed data so it must also be compressed.

6.6.1 Situation 1

We consider the CESM dataset as an example to evaluate
the first bitmap method. Our bitmap solution can help users
specify different precisions with fine granularity on irregu-
lar regions, in contrast with the other regular-region-based
multierror-bounded compression method.

In the CESM dataset, we retrieve the bitmap array by
using the LANDFRAC field, because it is a good match for
separating the land and ocean area in a world map (as
shown in Fig. 18 F). Applying LANDFRAC as the bitmap,
we test four different compression settings (described in
Table 10) on the other five data fields, as shown in Table 11.
In Table 10 we can see that the bitmap solution sacrifices
precision in the red area and can obtain a higher compres-
sion ratio. The overall PSNR will decrease when enlarging
the error bound for red areas, but the compression quality
for the interesting areas (here, the blue areas are considered

Fig. 14. QMCPACK visual quality comparison: Each slice has 69
69 pixels. We select slice 200, 300, and 400 to observe the visual distortion
because each has a different range: slice 200 has range [-0.06, 0], slice 300 has range [-0.0016, 0], and slice 400 has range [-0.0025, 0.0005].

Fig. 15. QMCPACK Slice 450, value range [0, 8]: A higher precision
0.001 for data in the area where x 2 ½0; 30� and y 2 ½30; 69�, while keeping
the error bound of other areas 0.5; The compression ratio is 242, and the
SZ3 method with global error bound equal to 0.5 has a compression ratio
243. The region almost does not harm the compression ratio at all.

Fig. 16. CESM with a region: while keeping the compression ratio high
(CR=316), we make the interesting region more precise (eb=0.01). The
error bound for the remaining regions is 0.02 in this example. If the
SZ3’s global error bound is used to reach eb=0.01 for the desired area,
the compression ratio is 57.
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interesting areas) remains the same—P_0 almost does not
decrease, while P_1 decreases because of a larger error
bound set in the corresponding area.

Table 11 demonstrates that our region-based multierror-
bounded compression method significantly outperforms all
other solutions in compression quality. The reason is two-
fold. (1) Our developed bitmap method can be used to fine-
tune the precisions for different irregular regions, which
can preserve the quality for regions of interest more effec-
tively while reaching a high compression ratio. This can be
verified by comparing the settings C and D in the table. (2)
As we discussed in Section 5.6, the interpolation predictor is
much more effective than the linear regression predictor
used by SZ2.1. This can be verified by comparing settings A
and C in the table. The artifact issue described in Section 5.6
no longer exists when applying the interpolation predictor,
based on our experiment. We do not show a visualization
image here because of space limits. In fact, its visualization
for the interpolation method is almost indistinguishable
from Fig. 6 D.

6.6.2 Situation 2

In the second situation where the bitmap array needs to be
stored togetherwith the compresseddata,we compress the bit-
map array by integer-based Huffman encoding [6] and
Zstd [19]. Specifically, the input data is the integer bitmap array
with the same number of elements as the original dataset.

Table 11 shows the compression ratio of our region-based
multierror-bounded lossy compression method (denoted as
CR’) after embedding the bitmap into the compressed data.
Since uniform error-bounded compression does not need to

store the bitmap array, this column shows only the compres-
sion ratios for settings B and D.We observe that CR’ is close to
CR (i.e., the compression ratio without storing the bitmap
array) in most cases. The reason is that the bitmap array is
fairly easy to compress with high ratios (reach �800 in this
example) because of the limited number of error bounds. In
fact, there are typically few error bounds in practice because of
the limited number of value intervals of interest or regions of
interest in general. Accordingly, the error level values would
likely exhibit repeated patterns in the bitmap array, especially
for the consecutive data points in space, leading to a very high
compression ratio.

Fig. 17. Comparison of compression time: The reference point is the
Fallback version, which means using a uniform error bound for all data
points. The overhead of the region-based method is slightly lower than
that of the multi-interval method.

TABLE 9
Compression Time and Overhead of Interval/Region/Fallback

Methods

Method CESM QMC RTM MIRAN NYX ISAB

Interval(s) 0.20 5.39 1.20 1.08 5.70 1.08
Region(s) 0.19 4.94 1.18 1.03 5.46 1.01
Fallback(s) 0.18 4.80 1.12 1.00 5.18 0.96
Interval% 8.9% 12.3% 7.1% 6.8% 10.0% 13.0%
Region% 3.3% 3.0% 5.4% 1.9% 5.4% 5.7%

Fig. 18. Six fields in CESM: the visualization indicates that bitmap-sepa-
rated precisions may be suitable to compress these fields.

TABLE 10
Compression Setting Definition

Setting Description

A SZ2.1 [18]: Lorenzo & Linear Regression Predictor with
one global error bound

B Use SZ2.1’s predictor, but adopt two error bounds set
by a bitmap array

C Interpolation-based compression with one uniform
error bound [34]

D Our developed region-based error-bounded
compressor with two error bounds set by a bitmap
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6.7 Compression Time and Scalability

To evaluate the compression time and scalability, we run a
series of tests in parallel on thousands of CPU cores on the
Argonne LCRC Bebop supercomputer [40].

We use the QMCPACK dataset for these experiments.
According to the visualization results we obtained from
the preceding section, we observe that no data distortion
can be viewed by the naked eye as long as a relatively
low error bound of 0.15 is used. However, considering
the potential impact of the lossy compression on the
user’s analysis, we set a very low error bound (1E-5) for
the range of interest: [-8,-5). Preserving this condition, we
perform the experiments on the Bebop supercomputer
with different numbers of cores (each core has 600 MB of
raw data to compress). The results of BDW partitions are
shown in Fig. 19.

As shown in Tables 12 and 13, the (de)compression time
is very stable, but the I/O time varies a lot for different
runs. The reason for a large variance in I/O is that the Bebop
machine is a shared system, and the disk I/O time will be
influenced by other users’ tasks.

In Fig. 19, we see that the write time takes an increasing
portion of the total time as we increase the number of cores.
Obviously, the I/O cost scales worse than our lossy com-
pression/decompression performance, especially because
of the limited number of I/O nodes used by the system.

Based on our results, we observe that the (de)compres-
sion time does not increase with the number of cores, which
shows that both our algorithm and SZ have very good scal-
ability. The key reason for good scaling is that the lossy
compression adopted in practice follows an embarrassing
parallel mode: no communication exists among the execu-
tion ranks/cores. The key reason our algorithm has lower
compression/decompression time than SZ is that our model
allows for higher error bounds for noninteresting ranges,
which can lead to higher compression ratios.

TABLE 11
Impact of Compression Settings on Compression Ratio (CR)
and PSNR for the Six CESM Fields of Fig 18: P_0/P_1 are the
PSNR in the Bitmap Separated Blue/Red Area, Respectively;
CR’ is the Compression Ratio That Takes the Bitmap Into

Account

Data Field Setting CR CR’ PSNR P_0 P_1

CLDLOW A: eb=0.01 21 - 44.94 46.74 49.59
min=-0.1 B: eb=0.01, 0.1 30 29.0 29.71 46.74 29.73
max=1 C: eb=0.01 138 - 47.14 49.23 51.26

D: eb=0.01, 0.1 224 176.6 32.31 49.22 32.34
FREQSH A: eb=0.01 16 - 44.73 46.76 48.97
min=0 B: eb=0.01, 0.1 22 21.4 28.67 46.76 28.67
max=1 C: eb=0.01 88 - 46.79 48.83 50.99

D: eb= 0.01, 0.1 126 109.5 32.10 48.83 32.13
LHFLX A: eb=1 30 - 60.27 62.28 64.55
min=-100 B: eb=1, 10 48 45.4 49.36 62.28 49.55
max=600 C: eb=1 106 - 62.41 64.58 66.40

D: eb= 1, 10 216 171.6 47.81 64.63 47.84
PBLH A: eb=5 37 - 53.04 55.20 57.07
min=0 B: eb=5, 15 45 42.7 47.72 55.20 48.55
max=1600 C: eb=5 107 - 55.03 57.24 58.99

D: eb= 5, 15 169 140.5 49.23 57.26 49.93
TSMN A: eb=1 66 - 44.78 47.04 48.64
min=200 B: eb=1, 10 191 155.4 36.19 47.04 36.51
max=310 C: eb=1 292 - 47.14 49.41 50.99

D: eb= 1, 10 812 411.5 31.64 49.24 31.66

Fig. 19. BDW partition: for each pair of bars, the left side is multi-interval
solution’s result, and the right side is SZ’s result. CP/DP Time are com-
pression/decompression time respectively. Write ZIP/Write DP are the I/
O time to write the compressed/decompressed file respectively. Read
ORG is the time to read the original file.

TABLE 12
Time Cost for Each Stage of SZ Running With 2100 Cores; The

Variance is Calculated Based on the 5 Runs

RUN 1 2 3 4 5 Variance

CP Time 9.11 8.67 8.3 9.21 8.05 0.25
DP Time 8.42 8.61 8.11 7.82 7.79 0.13
Write ZIP 12.17 112.75 30.29 30.11 16.93 1697.60
Write DP 55.77 53.84 176.56 175.79 162.33 4122.01
Total Time 95.61 229.77 304.32 304.56 231.38 7274.09

TABLE 13
Time Cost for Each Stage of Multi-Interval Algorithm
Running With 2100 Cores; The Variance is Calculated

Based on the 5 Runs

RUN 1 2 3 4 5 Variance

CP Time 7.38 7.3 7.29 7.29 8.2 0.16
DP Time 5.49 5.16 5.01 5.3 5.49 0.04
Write ZIP 39.78 45.46 46.05 1.49 1.43 542.87
Write DP 192.09 115.54 115.76 81.56 88.38 1925.85
Total Time 256.77 181.45 181.97 107.15 109.32 3850.00
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7 CONCLUSION AND FUTURE WORK

In this paper we propose multiple novel error-bounded lossy
compression methods that allow preserving various user-
defined constraints; to the best of our knowledge, this is the
first such lossy compression to allow these constraints. Based
on our evaluation using real-world simulations, we report the
following key findings.

� Multi-interval/region error-bound-based compression
can significantly improve the visual quality for users
with the same or even higher compression ratios.

� In the Nyx cosmology simulation, the multivalue-
interval error-bounded lossy compression can pre-
serve the halo cells perfectly with a high compres-
sion ratio up to 78, while the uniform error-bounded
compression suffers significant distortion of cells.

� In the Hurricane Katrina simulation, multi-interval
error-bounded compression can improve the com-
pression ratio from 37 (based on SZ) to 80 (improved
by 116%), even with higher data fidelity in maintain-
ing the shape of hurricane.

� Evaluation for the bitmap-based solution shows that
the cost to satisfying a customized complex region
requirement is acceptable and our solution can pos-
sibly be generalized to suit all kinds of fine-grained
error bound settings.

� Experiments on the Argonne Bebop [40] supercom-
puter with up to 2,100 cores show that our multipreci-
sion lossy compressors have a very good scalability.

In the future we will explore new data fidelity require-
ments used by more applications in practice.
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