
TAC: Optimizing Error-Bounded Lossy Compression for
Three-Dimensional Adaptive Mesh Refinement Simulations

Daoce Wang

Washington State University

Pullman, WA, USA

daoce.wang@wsu.edu

Jesus Pulido

Los Alamos National Laboratory

Los Alamos, NM, USA

pulido@lanl.gov

Pascal Grosset

Los Alamos National Laboratory

Los Alamos, NM, USA

pascalgrosset@lanl.gov

Sian Jin

Washington State University

Pullman, WA, USA

sian.jin@wsu.edu

Jiannan Tian

Washington State University

Pullman, WA, USA

jiannan.tian@wsu.edu

James Ahrens

Los Alamos National Laboratory

Los Alamos, NM, USA

ahrens@lanl.gov

Dingwen Tao
∗

Washington State University

Pullman, WA, USA

dingwen.tao@wsu.edu

ABSTRACT

Today’s scientific simulations require a significant reduction of data

volume because of extremely large amounts of data they produce

and the limited I/O bandwidth and storage space. Error-bounded

lossy compression has been considered one of the most effective

solutions to the above problem. However, little work has been done

to improve error-bounded lossy compression for Adaptive Mesh

Refinement (AMR) simulation data. Unlike the previous work that

only leverages 1D compression, in this work, we propose to lever-

age high-dimensional (e.g., 3D) compression for each refinement

level of AMR data. To remove the data redundancy across different

levels, we propose three pre-process strategies and adaptively use

them based on the data characteristics. Experiments on seven AMR

datasets from a real-world large-scale AMR simulation demonstrate

that our proposed approach can improve the compression ratio by

up to 3.3× under the same data distortion, compared to the state-

of-the-art method. In addition, we leverage the flexibility of our

approach to tune the error bound for each level, which achieves

much lower data distortion on two application-specific metrics.

CCS CONCEPTS

• Theory of computation→ Data compression.

KEYWORDS

AMR; Lossy compression; scientific data; compression performance.

ACM Reference Format:

Daoce Wang, Jesus Pulido, Pascal Grosset, Sian Jin, Jiannan Tian, James

Ahrens, and Dingwen Tao. 2022. TAC: Optimizing Error-Bounded Lossy

Compression for Three-Dimensional Adaptive Mesh Refinement Simula-

tions. In Proceedings of the 31st International Symposium onHigh-Performance
Parallel and Distributed Computing (HPDC ’22), June 27-July 1, 2022, Min-
neapolis, MN, USA. ACM, New York, NY, USA, 13 pages. https://doi.org/10.

1145/3502181.3531458

∗
Corresponding author: Dingwen Tao, School of Electrical Engineering and Computer

Science, Washington State University, Pullman, WA 99163, USA.

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

HPDC ’22, June 27-July 1, 2022, Minneapolis, MN, USA
© 2022 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-9199-3/22/06.

https://doi.org/10.1145/3502181.3531458

1 INTRODUCTION

Motivation. The increase in supercomputer performance over

the last few years has been insufficient to solve many challenging

modeling and simulation problems. For example, the complexity of

solving evolutionary partial differential equations (PDEs) scales as

Ω(𝑛4), where 𝑛 is the number of mesh points per dimension. Thus,

the performance improvement of about three orders of magnitudes

over the past 30 years has meant just a 5.6× gain in spatio-temporal

resolution [8]. To address this issue, many high-performance com-

puting (HPC) simulation packages [15] (such as AMReX [41] and

Athena++ [33]) use Adaptive Mesh Refinement (AMR)—which ap-

plies computation to selective regions of most interest—to increase

resolution. Compared to the method where a high resolution is

applied everywhere, the AMR method can greatly reduce the com-

putational complexity and storage overhead; thus, it is one of most

widely used frameworks for many HPC applications [2, 31, 34, 38]

in various science and engineering domains.

Although AMR can save storage space to some extent, AMR ap-

plications running on supercomputers still generate large amounts

of data, making the data transmission and storage challenging. For

example, one Nyx simulation [30] with a resolution of 4096
3
(i.e.,

0.5 × 20483 mesh points in the coarse level and 0.5 × 40963 in the

fine level) can generate up to 1.8 TB of data for a single snap-

shot; a total of 1.8 PB of disk storage is needed assuming running

the simulation 5 times with 200 snapshots dumped per simulation.

Therefore, reducing data size is necessary to lower the storage over-

head and I/O cost and improve the overall application performance

for large-scale AMR applications running on supercomputers.

A straightforward way to address this issue is to use data com-

pression. However, traditional lossless compression techniques such

as GZIP [12] and Zstandard [44] can only provide a compression

ratio up to 2 for scientific data [32]. On the other hand, a new gener-

ation of lossy compressors which can provide a strict error control

(called “error-bounded” lossy compression) has been developed,

such as SZ [14, 24, 35], ZFP [27], MGARD [1], and TTHRESH [6].

Using those error-bounded lossy compressors, scientists can achieve

relatively high compression ratios while minimizing the quality

loss of reconstructed data and post analysis, as demonstrated in

many prior studies [4, 5, 9, 17, 18, 21, 28, 40].

Limitation of state-of-the-art approach. Only a few existing con-

tributions have investigated error-bounded lossy compression for

AMR applications and datasets. A common approach is to generate

uniform resolution data by up-sampling the coarse-level data and

https://doi.org/10.1145/3502181.3531458
https://doi.org/10.1145/3502181.3531458
https://doi.org/10.1145/3502181.3531458

merging them with the finest-level data, and then to perform com-

pression on the merged data. However, this approach introduces

redundant information to the data, which will significantly degrade

the compression ratio, especially when the up-sampling rate is high

or there are multiple coarse levels to up-sample. Recently, Luo et al.
introduced zMesh [29], a technique that groups data points that

are mapped to the same or adjacent geometric coordinates such

that the dataset is smoother and more compressible. However, since

zMesh maps data points from different AMR levels to adjacent geo-

metric coordinates and generates a 1D array, it cannot adopt 3D

compression which most HPC simulations use. Moreover, zMesh is

designed only for patch-based AMR applications. The patch-based

AMR structure saves the data blocks that will be refined at the next

level in the current level redundantly. While the state-of-the-art

AMR framework AMReX provides quadtree/octree-based structure

besides patch-based structure [3], many newly developed AMR

applications such as Nyx adopt the tree-based structure to avoid

redundancy by only saving each data point in the level of its finest

refinement. For this scenario, the reorganization approach proposed

by zMesh may not improve the data smoothness appropriately (will

be demonstrated in Section 4).

Key contributions. To solve these issues, we propose an approach

(called TAC) to optimize error-bounded Three-dimensional AMR

lossy Compression. Specifically, we propose to adopt 3D compres-

sion for each AMR level. However, each level may contain many

empty regions (i.e., zero blocks), where data points are saved in

other levels; these empty regions (zero blocks) significantly decrease

the data smoothness/compressibility and increase the data size

(hence reduce the compression ratio). Thus, we propose to either

remove these empty regions or partially pad them with appropriate

values, based on the density of empty regions. Furthermore, we

propose an optimization to reduce the time cost of removing empty

regions. Finally, we evaluate TAC on seven datasets and compare

it with the state-of-the-art approach. Our main contributions are

summarized as follows.

• We propose to leverage 3D compression to compress each

level of an AMR dataset separately. We propose a hybrid

compression approach based on the following three pre-

process strategies and data characteristics (e.g., data density).

• For sparse AMR data, we propose an optimized sparse tensor

representation to efficiently remove empty regions.

• To reduce the time overhead of removing empty regions, we

propose an optimization based on the enhanced 𝑘-d tree.

• For dense AMR data, we propose a padding approach to

improve the smoothness and compressibility.

• We tune the error bound for each AMR level for Nyx cos-

mology simulation, which improves the compression quality

in terms of two application-specific post-analysis metrics.

• Experiments show that, compared to the state-of-the-art

approach zMesh, TAC can improve the compression ratio

by up to 3.3× under the same data distortion on the tested

real-world datasets.

Experimental methodology and artifact availability.We evaluate

TAC on seven datasets from two real-world AMR simulation runs.

The AMR simulations are well-known, open-source cosmology

simulations—Nyx [30]. We compare TAC with three baselines in-

cluding zMesh using generic metrics such as compression ratio and

peak signal-to-noise ratio (PSNR) and application-specific metrics

such as power spectrum and halo finder. Our code and datasets are

available at https://github.com/hipdac-lab/3dAMRcomp.

Limitations of the proposed approach. Compared with the ap-

proach that up-samples the coarse-level data and then compresses

the data with uniform resolution (denoted by “3D baseline”), TAC

providesmuch better compression performance (i.e., rate-distortion),

when the finest level of the AMR dataset has a relatively low density.

However, when the finest level has a relatively high density, TAC is

slightly worse than the 3D baseline. We will discuss this limitation

in detail in Section 4.3.

In Section 2, we present background information about error-

bounded lossy compression, AMR method, 𝑘-d tree, and related

work on AMR data compression. In Section 3, we describe our pro-

posed pre-process strategies and hybrid compression. In Section 4,

we show the experimental results on different AMR datasets. In

Section 5, we conclude our work and discuss the future work.

2 BACKGROUND AND RELATEDWORK

In this section, we introduce background information about lossy

compression for scientific data, AMR method and data, classic 𝑘-d

tree used in particle data compression, and discuss the state-of-the-

art method of AMR data compression and remaining challenges.

2.1 Lossy Compression for Scientific Data

There are two main categories for data compression: lossless and

lossy compression. Compared to lossless compression, lossy com-

pression can offer much higher compression ratio by trading a little

bit of accuracy. There are some well-developed lossy compressors

for images and videos such as JPEG [36] and MPEG [23], but they

do not have a good performance on the scientific data because they

are mainly designed for integers rather than floating points.

In recent years there is a new generation of lossy compressors

that are designed for scientific data, such as SZ [14, 24, 35], ZFP [27],

MGARD [1], and TTHRESH [6]. These lossy compressors provide

parameters that allow users to finely control the information loss

introduced by lossy compression. Unlike traditional lossy compres-

sors such as JPEG [36] for images (in integers), SZ, ZFP, MGARD,

and TTHRESH are designed to compress floating-point data and

can provide a strict error-controlling scheme based on the user’s

requirements. Generally, lossy compressors provide multiple com-

pression modes, such as error-bounding mode and fixed-rate mode.

Error-bounding mode requires users to set an error type, such as

the point-wise absolute error bound and point-wise relative error

bound, and an error bound level (e.g., 10
−3
). The compressor ensures

that the differences between the original data and the reconstructed

data do not exceed the user-set error bound level.

In this work, we focus on the SZ lossy compression (2021 R&D

100 Award Winner [39]) because SZ typically provides higher com-

pression ratio than ZFP [28, 42] and higher (de)compression speeds

than MGARD [26, 42] and TTHRESH [6]. SZ is a prediction-based

error-bounded lossy compressor for scientific data. It has threemain

steps: (1) predict each data point’s value based on its neighboring

points by using an adaptive, best-fit prediction method; (2) quantize

https://github.com/hipdac-lab/3dAMRcomp

Figure 1: Visualization (one zoom-in 2D slice) of three key timesteps

generated from anAMR-based cosmology simulation. The grid struc-

ture changes with the universe’s evolution. The red boxes indicate

different resolutions within one AMR level.

the difference between the real value and predicted value based

on the user-set error bound; and (3) apply a customized Huffman

coding and lossless compression to achieve a higher ratio.

2.2 AMR Method and AMR data

AMR is a method of adapting the accuracy of a solution (e.g., solving

hydrodynamics equations) by using a non-uniform grid to increase

computational and storage savings while still achieving the desired

accuracy. AMR applications change the mesh or spatial resolution

based on the level of refinement needed by the simulation and use

finer mesh in the regions with more importance/interest and coarser
mesh in the regions with less importance/interest. Figure 1 shows

that during an AMR run, the mesh will be refined when the value

meets the refinement criteria, e.g., refining a block when its norm

of the gradients or maximum value is larger than a threshold [20].

Figure 2: A typical example of AMR data storage and usage.

Clearly, the data generated by an AMR application are hierarchi-

cal data with different resolutions. The data of each AMR level are

usually stored separately (e.g., in a 1D array). For example, Figure 2

(left) shows a simple example of two-level AMR data; “0” means

high resolution (the fine level) and “1” for low resolution (the coarse

level). When the AMR data are needed for post analysis or visual-

ization, users will typically covert the data from different levels to

a uniform resolution. In the previous example, we will up-sample

the data in the coarse level and combine it with the data in the fine

level, as shown in Figure 2 (right).

2.3 Existing AMR Data Compression

2.3.1 1D AMR Compression. The main challenge for AMR data

compression is that the AMR data is comprehensive and hierar-

chical with different resolutions. A naive approach is to compress

the 1D data of each AMR level separately. However, this approach

loses most of the topological/spatial information, which is criti-

cal for data compression. zMesh [29] is a state-of-the-art AMR

data compression based on the 1D approach. Different from the

naive 1D approach, zMesh re-organizes the 1D data based on each

point’s coordinate in the 2D layout; in other words, zMesh puts

the points neighbored in the 2D layout closer in the 1D array. It

can increase the data smoothness/compressibility to benefit the

following 1D compression such as SZ on the traditional patch-

based [37] AMR data with redundancy. However, zMesh does not

leverage high-dimensional compression, while many previous stud-

ies [35, 43] proved that leveraging more dimensional information

(e.g., spatial/temporal information) can significantly improve the

compression performance (e.g., compression ratio). Moreover, it

only focuses on 2D patch-based AMR data. TAC aims to leverage

high-dimensional data compression and supports 3D AMR data.

2.3.2 High-dimensional AMR Compression. Similar to the idea de-

scribed in Section 2.2, a straightforward way to leverage 3D com-

pression on 3D AMR data is to compress different levels together by

up-sampling coarse levels. However, this approach must handle ex-

tra redundant data generated by the up-sampling process. As shown

in Figure 2, 1A, 1B, and 1C are redundant points in the compression.

Note that the storage overhead of these redundant points will be

higher when more data are in the coarse levels or up-sampling rate

is higher, especially for 3D AMR data. This is because we only need

to duplicate one point from the coarse level for 4 times for 2D AMR

data but 8 times for 3D AMR data, with an up-sampling rate of 2.

Another limitation of this approach is that it cannot apply different

compression configurations (e.g., error bound) to different AMR

levels, because after up-sampling all data points will have the same

importance. However, the purpose of using the AMR method is to

set different interests to different AMR levels, so the error bound

for each AMR level can be chosen adaptively based on the analysis.

2.4 𝑘-D Tree for Particle Data Compression

𝑘-d tree [7] is a binary tree in which every node represents a certain

space. Without loss of generality, for the 3D case, every non-leaf

node in a 𝑘-d tree splits the space into two parts by a 2D plane

associated with one of the three dimensions. The left subspace is

associated with the left child of the node, while the right subspace

is associated with the right child. 𝑘-d tree is commonly used in

particle data compression [10, 13, 19] to locate each particle and

remove empty regions. Specifically, a 𝑘-d tree keeps dividing the

space in between along one dimension until the space is empty or

contains only one particle. We will propose to optimize the classic

k-d tree and use it to remove empty regions and increase the data

compressibility for each AMR level (to be detailed in Section 3.2).

3 OUR PROPOSED DESIGN

In this section, we propose a pre-process approach for AMR data

to leverage high-dimensional data compression algorithms in each

AMR level. Specifically, we propose three pre-process strategies to

OpST

AKDTree

GSP

Processed
AMR Data SZDensifty

filter

Level_2

Level_1

Level_0

AMR data TAC

Figure 3: Workflow overview of our proposed TAC.

(a) z10 fine level (b) z10 coarse level

Figure 4: Visualization of data distributions of an example AMR data

“z10”, where z = redshift. Non-empty regions are shown in red.

mitigate the issue of irregular data distribution. We also propose an

adaptive approach to select the best-fit pre-process strategy based

on the data characteristic (e.g., density) of each AMR level. Figure 3

show the overview of our proposed TAC. It has a density filter that

determines the best-fit pre-process strategy for each AMR level in

the AMR dataset before compression. We will now illustrate our

proposed three strategies in Section 3.1, 3.2, and 3.3, respectively.

3.1 Optimized Sparse Tensor Representation for

Low-density Data

To compress the AMR data in 3D, besides the aforementioned 3D

baseline, we can also compress each level separately in 3d. However,

in that way, the data will be split into multiple levels, and each level

will have many empty regions and an irregular data distribution, as

shown in Figure 4. A naive solution to handle the irregular 3D data

is to fill the empty regions with zeros and pass a large 3D block to

the compressor. However, when most of the regions in the data are

empty (e.g., about 77% of the data is empty in Figure 4a), we have

to fill up many zeros, which would greatly increase the size of data

for compression, resulting in a low compression ratio.

To solve this issue, we propose to use a naive sparse-tensor-based

approach (called NaST) to remove the empty regions, as shown

in Figure 5. NaST includes four main steps in the compression

process: (1) partition the 3D data into multiple unit blocks, (2)

remove the empty blocks, (3) linearize the remaining 3D blocks into

a 4D array, and (4) pass the 4D array to the compressor. Note that

in the decompression process, we will put the unit blocks from the

decompressed 4D array back to the original data.

Figure 5: Workflow of the naive sparse tensor (NaST) method (empty

regions marked in pink and non-empty regions marked in blue).

However, in order to completely remove the empty regions to

form a sparse representation, the unit block size needs to be rel-

atively small compared to the input data size (e.g., 16
3
vs. 512

3
),

Figure 6: A 2D example of our proposed OpST approach. The sub-

blocks are extracted according to our optimized sizes saved in �(.

E.g., a 2-by-2 sub-block �0 is extracted according to �(1 [2] [1].

resulting in a high proportion of data on the boundary. While

boundary data have less information of neighboring data than non-

boundary data, thus, it is harder for prediction-based compressors

such as SZ to predict the boundary data values. As a result, the

NaST method without optimizing the boundary data would have

low compression performance.

To address the above problem, we propose an optimized sparse

tensor representation (calledOpST) to effectively remove the empty

regions as well as maintain a relatively large unit block size so as

to reduce the portion of boundary data. The detailed description of

our algorithm can be found in Algorithm 1. We use a 2D example

to demonstrate our approach, as illustrated in Figure 6. Specifically,

(1) we partition the data into many small unit blocks. (2) For each

unit block, we use the dynamic programming method to initiate an

array 𝐵𝑆 to save the dimension/size of the maximum square whose

bottom-right corner is that unit block (line 6, will be discussed

in the next paragraph). (3) We extract the sub-blocks (composing

of multiple unit blocks) from the original data according to the

sizes saved in 𝐵𝑆 (lines 6 and 7). (4) Since the original data will be

changed after the extraction, we need to partially update 𝐵𝑆 based

on maxSide (will be discussed later). We loop (3) and (4) from the

bottom-right corner to the top-left corner until the original data

is empty. (5) After extracting all the sub-blocks, we put them into

multiple 3D arrays (to be compressed) based on their sizes. Note

that the sub-blocks with the same size will be merged into the same

array for easy compression.

When initializing the 𝐵𝑆 in the step (2), we start with the𝑏 ′[𝑖] [𝑗]
with 𝑖 = 0 or 𝑗 = 0 (i.e., on the top-left edge), where 𝑏 ′[·] [·]
are the unit blocks: if 𝑏 ′[𝑖] [𝑗] is empty, we will set 𝐵𝑆 [𝑖] [𝑗] to 0

otherwise 1. For the remaining unit blocks, if it is empty, 𝐵𝑆 [𝑖] [𝑗]
will be 0; otherwise, 𝐵𝑆 [𝑖] [𝑗] will be set to 1 plus the minimum

value among its three neighboring blocks (i.e., upper block, left

block, and upper-left block). In other words, we have 𝐵𝑆 [𝑖] [𝑗] =

1+min(𝐵𝑆 [𝑖] [𝑗 − 1], 𝐵𝑆 [𝑖 − 1] [𝑗], 𝐵𝑆 [𝑖 − 1] [𝑗 − 1]) for the 2D case.

For example, 𝐵𝑆1 [2] [1] is 2 because all its upper-left neighbors are
1 (as shown in Figure 6). However, both 𝐵𝑆1 [1] [1] and 𝐵𝑆2 [1] [2]
can only reach 1 because one of their neighbors are set to 0, having

no chance to form a sub-block with the size of 2.

Moreover, as mentioned in the step (3), we need to update 𝐵𝑆

after each extraction. Specifically, for each sub-block we extract,

we have to set its corresponding values in 𝐵𝑆 to zeros. For instance,

as shown in Figure 6, after we extract a 2-by-2 sub-block 𝐵0 at

𝐵𝑆1 [2] [1], we need to set 𝐵𝑆2 [1] [0], 𝐵𝑆2 [1] [1], 𝐵𝑆2 [2] [0], and
𝐵𝑆2 [2] [1] to zeros. In addition, we also need to recalculate a part of

Algorithm 1: Proposed Optimized Sparse Tensor Method

Input: Sparse 3D data S

Output: multiple 4D array 𝐷=
1 for each unit block 𝑏 (𝑥,𝑦, 𝑧) do
2 if 𝑏 (𝑥,𝑦, 𝑧) is non-empty then

3 if x is 0 or y is 0 or z is 0 then
4 𝐵𝑆 (𝑥,𝑦, 𝑧) = 1

5 else

6 𝐵𝑆 (𝑥,𝑦, 𝑧) = min(𝐵𝑆 (𝑥 − 1, 𝑦, 𝑧), 𝐵𝑆 (𝑥,𝑦 −
1, 𝑧), 𝐵𝑆 (𝑥,𝑦, 𝑧−1), 𝐵𝑆 (𝑥−1, 𝑦−1, 𝑧), 𝐵𝑆 (𝑥,𝑦−
1, 𝑧−1), 𝐵𝑆 (𝑥−1, 𝑦, 𝑧−1), 𝐵𝑆 (𝑥−1, 𝑦−1, 𝑧−1))+1
; /* BS(x,y,z) is the dimension size of the

maximum cube whose bottom right rear corner is

the unit block with index (x,y,z) in the

original data */

7 𝑚𝑎𝑥𝑆𝑖𝑑𝑒 = max(𝑚𝑎𝑥𝑆𝑖𝑑𝑒, 𝐵𝑆 (𝑥,𝑦, 𝑧))
8 end

9 end

10 end

11 for each unit block 𝑏 (𝑥,𝑦, 𝑧) do
12 if 𝐵𝑆 (𝑥,𝑦, 𝑧) ≥ 1 then

13 𝑠𝑖𝑧𝑒 = 𝐵𝑆 (𝑥,𝑦, 𝑧)
𝐷B8I4 ← 𝑆 ((𝑥 − 𝑠𝑖𝑧𝑒 : 𝑥) ∗ 𝑏𝑙𝑘𝑆𝑖𝑧𝑒, (𝑦 − 𝑠𝑖𝑧𝑒 :
𝑦) ∗ 𝑏𝑙𝑘𝑆𝑖𝑧𝑒, (𝑧 − 𝑠𝑖𝑧𝑒 : 𝑧) ∗ 𝑏𝑙𝑘𝑆𝑖𝑧𝑒) ; /* put the

sub-block to the according 4D array */

14 𝑏 (𝑥 − 𝑠𝑖𝑧𝑒 : 𝑥, 𝑦 − 𝑠𝑖𝑧𝑒 : 𝑦, 𝑧 − 𝑠𝑖𝑧𝑒 : 𝑧) ← 𝑒𝑚𝑝𝑡𝑦

𝐵𝑆 (𝑥 − 𝑠𝑖𝑧𝑒 : 𝑥, 𝑦 − 𝑠𝑖𝑧𝑒 : 𝑦, 𝑧 − 𝑠𝑖𝑧𝑒 : 𝑧) = 0

𝐵𝑆 = 𝑢𝑝𝑑𝑎𝑡𝑒𝐵𝑠 (𝐵𝑆, 𝑥, 𝑦, 𝑧, 𝑚𝑎𝑥𝑆𝑖𝑑𝑒)
15 end

16 end

17 return 𝐷=

𝐵𝑆 (line 17 in Algorithm 1) because the extraction could influence

other 𝐵𝑆 values. For example, we need to recalculate 𝐵𝑆2 [1] [2]
(marked in bold orange) after extracting 𝐵0. Note that this update

is a partial update as the 𝐵𝑆 values to be updated will be bounded

by maxSide which is the dimension size of the largest cube in the

dataset (line 7).

Similar to the NaST method, during decompression we will put

the sub-blocks back to reconstruct the data based on the saved

coordinates. Note that after our optimization, each sub-block size

will be relatively large (e.g., 96
3
versus the original data size of

512
3
), the metadata overhead of saving the coordinates of all the

sub-blocks will be negligible (e.g., 0.1%).

Finally, we show a visual comparison of the compression quality

between NaST and OpST in Figure 7. Note that both use the same

compressor with the same error bound. Brighter means more error.

We can observe that compared to the NaST method, OpST can

significantly reduce the overall compression error, especially for

the data points on the boundary. It is worth noting that even with

lower error, our OpST can still provide a higher compression ratio

than NaST. This is because our proposed optimization will generate

larger sub-blocks, which provide more information for prediction-

based lossy compressors such as SZ to achieve better rate-distortion.

A detailed evaluation will be shown in Section 4.

(a) NaST (CR = 233.8, PSNR = 76.9 dB) (b) OpST (CR = 241.1, PSNR = 77.8 dB)

Figure 7: Visual comparison (one slice) of compression errors of two

approaches using SZ based on Nyx “baryon density” field (i.e., z10’s

fine level, 23% density). Brighter means higher compression error.

The error bound is the relative error bound of 4.8 × 10−4.

3.2 Adaptive 𝑘-D Tree for Medium-density Data

The OpST approach proposed for low-density data, however, has a

high computation overhead, especially when the data is relatively

dense. This is because, on one hand, OpST needs to update BS based
on maxSide for each extraction of a sub-block, while the larger the

maxSide, the more values in BS that need to be updated; on the

other hand, maxSide is the dimension size of the largest non-empty

cube in the dataset, which is highly related to the density of the

dataset. Thus, the time complexity of OpST can be expressed as

𝑂 (𝑁 2 · 𝑑), where 𝑁 is the unit block number and 𝑑 is the density.

Note that here density describes how dense the data is. For example,

the density of 77% means that 23% of the data is empty. Clearly,

when the density of an AMR level is relatively high, using OpST

for compression will be relatively time-consuming.

To address the above high overhead issue of OpST, we propose

an adaptive 𝑘-d tree, calledAKDTree, to remove empty regions and

extract sub-blocks (containing multiple unit blocks). AKDTree has

a lower time complexity of 𝑂 (1
3
𝑁 · log𝑁) (will be discussed later).

Figure 8 shows a simple 2D example. Specifically, (1) we partition

the data into small unit blocks. (2) We use a tree to hierarchically

represent the whole data. Each node in the tree is associated with

a sub-block of the data. Moreover, each node stores the number

of non-empty unit blocks in the sub-block associated with the

node. (3) For each node, we split its associated sub-block from the

middle along one dimension to form two sub-blocks for its two

children. Note that we select one dimension which can maximize

the difference of the numbers of non-empty unit blocks of the two

children (will be discussed in the next two paragraphs). (4) We keep

splitting a node until it has no empty unit block or itself is empty.

(5) Once finishing the construction of the tree, we collect all the leaf

nodes and send them to the compressor. Note that a non-empty leaf

node does not have any empty unit block; otherwise, it will keep

Figure 8: 2d Example of adaptive k-d tree, the sub-block will be

adaptively split to in order to effectively remove the empty region

as well as get bigger full sub-block.

splitting. Thus, a leaf node must be an empty or full node, as shown

in Figure 8. The detailed algorithm is described in Algorithm 2.

As mentioned in the step (3), we are distributing the non-empty

unit blocks unevenly to two children for each node because we

attempt to get as many leaf nodes with large sub-block sizes as

possible. If we keep splitting sub-blocks in a fixed way, for instance,

first split along the 𝑥-axis, second split along the 𝑦-axis, third split

along the 𝑥-axis, fourth split along the 𝑦-axis, and so on, we will

Algorithm 2: Dynamic 𝑘-D Tree

Input: data block 𝑑 , counts information

Output: 𝑘-d tree

1 node.count← counts information;

2 if 𝑑 is empty or 𝑑 is full then
3 continue ; /* stop splitting */

4 else

5 if 𝑑 is a cube then
6 split d equally into 8 oct-blocks: 𝑠1, · · · , 𝑠8;
7 get the counts 𝑐1, ...𝑐8 for 𝑠1, · · · , 𝑠8;
8 find the maxDiff partition 𝑑1,𝑑2;

9 node.left = AKDTree (𝑑1, four 𝑐8 of 𝑑1);

10 node.right = AKDTree (𝑑2, four 𝑐8 of 𝑑2);

11 else if 𝑑 is a flat cuboid then

12 get the counts 𝑐1, · · · , 𝑐4 from counts information;

13 find the maxDiff partition 𝑑1, 𝑑2;

14 node.left = AKDTree (𝑑1, two 𝑐8 of 𝑑1);

15 node.right = AKDTree (𝑑2, two 𝑐8 of 𝑑2);

16 else if 𝑑 is a slim cuboid then

17 get the counts 𝑐1, 𝑐2 from counts information;

18 split 𝑑 along the largest dimension to get 𝑑1,𝑑2;

19 node.left = AKDTree (𝑑1, 𝑐1);

20 node.right = AKDTree (𝑑2, 𝑐2);

21 end

22 return node;

Figure 9: Example of the adaptive splitting, different shapes will

have different number of choices for splitting. The process will be

looped until a node is empty or full.

get a 2-by-2 sub-block for the node 𝑛[2] [2] as shown in the dashed

box, while its largest possible sub-block could be 4 by 2.

To select one of the dimensions to unevenly distribute its non-

empty unit blocks to the two children. We now present our dynamic

splitting approach. We categorize nodes into three different types:

“cube” nodes, “flat” nodes, and “slim” nodes, whose dimension ratios

are 1:1:1, 2:2:1, 2:1:1, respectively. First of all, for the cube node 𝑑 ,

we first divide it into eight oct-blocks, i.e., 𝑠1, 𝑠2, · · · , 𝑠8 (as shown
in Figure 9), each sized

=
2

3
. Here 𝑛 is the dimension size of the

original data. Then, we can get the counts of non-empty unit blocks

of the eight oct-blocks, i.e., 𝑐1, 𝑐2, · · · , 𝑐8. After that, We will decide

along which dimension to split the cube node 𝑑 based on the counts.

Specifically, we can calculate the following three difference values:

diffG = |𝑐1 + 𝑐3 + 𝑐5 + 𝑐7 − 𝑐2 − 𝑐4 − 𝑐6 − 𝑐8 |,
diff~ = |𝑐1 + 𝑐2 + 𝑐5 + 𝑐6 − 𝑐3 − 𝑐4 − 𝑐7 − 𝑐8 |,
diffI = |𝑐1 + 𝑐2 + 𝑐3 + 𝑐4 − 𝑐5 − 𝑐6 − 𝑐7 − 𝑐8 |.

Finally, we compare these three values and choose the dimension

with the maximum difference to split. For example, if the maximum

difference is diffI , we will split 𝑑 along z-axis (i.e., the pink 2D plane

shown in Figure 9) and get two flat nodes 𝑑1 and 𝑑2.

Then, for the flat nodes such as 𝑑1, we can reuse 𝑐1, · · · , 𝑐4 to
decide whether to split 𝑑1 along x-axis or y-axis by choosing the

larger one among the following two difference values.

diffG = |𝑐1 + 𝑐3 − 𝑐2 − 𝑐4 |, diff~ = |𝑐1 + 𝑐2 − 𝑐3 − 𝑐4 |.

Finally, for the slim nodes such as𝑑11, we simply split it along x-axis

to get two cube nodes 𝑠1 and 𝑠2. This process (i.e., cube nodes→flat

nodes→slim nodes) in the step (3) will be looped until the node

becomes to a leaf node (i.e., empty or full).

Note that based on the above description, the counting process is

required every three nodes in each three path (i.e., only for the “cube”

nodes). Thanks to this dynamic splitting approach, we can lower

the time complexity of the AKDTree algorithm to 𝑂
�
1

3
· 𝑁 · log𝑁

�
,

where 𝑁 is the number of unit blocks, while extracting as many

relatively large sub-blocks without empty unit block as possible.

In addition, after the dynamic splitting, we will have a series of

sub-blocks with the same size but different directions (e.g., 2:2:1,

2:1:2, 1:2:2). We will align the sub-blocks with the same size based

on their splitting dimensions (instead of transposing them in the

memory), merge them into an array, and feed multiple merged

arrays to the following compression.

Figure 10: A 2D example of GSP approach. Non-empty blocks are in

navy blue; padded blocks are in light blue/red; padded blocks based

on more than one non-empty neighbors are in red.

3.3 Ghost-Shell Padding for High-density Data

For high-density data such as z10’s coarse level shown in Figure 4b

(i.e., about 77% density), the benefit of using our proposed OpST or

AKDTree is minimal because there is not much room for removing

empty regions. Meanwhile, due to the data partition/reorganization,

OpST and AKDTree will hurt the data locality/smoothness.

To this end, we propose to pad zeros into the few empty regions,

instead of removing them, followed by compression. However, these

padded zeros can greatly reduce the performance of compression,

especially for prediction-based lossy compression such as SZ, be-

cause these zeros can significantly affect the prediction accuracy

of SZ, resulting in high compression errors on the boundaries, as

shown in Figure 12a. More specifically, as mentioned in Section 3.1,

SZ uses each point’s neighboring points’ values to predict its value.

Thus, for those boundary points which are adjacent to padded zeros,

SZ will involve zero(s) into the prediction, while the actual values

of these empty regions are typically non-zeros (saved in other AMR

levels), which will seriously mislead the prediction.

To eliminate the above issue of padding zeroes, we propose to

use a ghost-shell padding strategy (GSP) to diffuse neighboring

values to a padding layer. Figure 10 illustrates the high-level idea,

and the detailed algorithm is described in Algorithm 3. Specifically,

we still partition the data into unit blocks. Then, we will pad each

empty unit block by using the average of its non-empty neighbors’

boundary data values. Note that some empty unit blocks can have

more than one non-empty neighbors such as the red box shown

in Figure 10. For these blocks, we will use the average value of

all its neighbors for padding. Correspondingly, we will remove

these padded values during the decompression based on the saved

padding information. Note that since the padding process is only

for non-empty blocks, this metadata overhead is almost negligible

for high-density data (e.g., 0.1%).

After padding, each boundary point will be predicted using the

average of all the boundary data in the unit block(s) to which it

belongs or is neighbored. As shown in Figure 12, compared to the

zero filling (ZF) approach, GSP can significantly reduce the overall

compression error, especially for the boundary data. Moreover,

the GSP approach can provide a similar compression ratio to the

ZF approach on this high-density data and hence a better rate-

distortion. A detailed evaluation will be presented in Section 4.

3.4 Hybrid Compression Strategy

In this section, we propose a solution to adaptively choose a best-fit

compression strategy from on our proposed OpST, AKDTree, and
GSP based on the data characteristics (i.e., data density). According

to Section 3.1, 3.2, and 3.3, the OpST approach is more suitable

Algorithm 3: Proposed Ghost Shell Padding Method

Input: Data, 𝑥 , 𝑦

Output: Data after padding

1 for each unit block 𝑏8 do
2 if 𝑏8 is empty and 𝑏8 has non-empty neighbor then
3 for each non-empty neighbor 𝑛 9 do
4 pad slice = avg (first 𝑦 slices of 𝑛 9 next to 𝑏8);

5 if overlap edge then
6 𝑝𝑎𝑑 = 𝑝𝑎𝑑/2;
7 else if overlap corner then
8 𝑝𝑎𝑑 = 𝑝𝑎𝑑/3;
9 else

10 continue;

11 end

12 add an 𝑥-layers pad slice to 𝑏8 next to 𝑛 9 ;

13 end

14 end

15 end

16 return padded Data

for sparse (i.e., low-density) data, while the AKDTree approach

is designed to address the high time overhead of OpST when the

density of data increases. When the data density is very high, the

GSP approach will be used to maintain the data smoothness/locality

compared to the AKDTree and OpST approaches. Therefore, we

propose to use two data-density thresholds to determine when to

use OpST, AKDTree, or GSP.

To decide the first threshold 𝑇1 for switching between OpST

and AKDTree, we perform a series of experiments, as shown in

Figure 11. The figure shows that OpST and AKDTree have almost

identical compression performance in terms of bit-rate and PSNR

on all six datasets/levels (from different timesteps) with different

densities. Moreover, Figure 13 shows the time costs of OpST and

AKDTree (excluding compression). The figure demonstrates that

the time of AKDTree is relatively stable, while the time of OpST

increases linearly with the increase of data density. Overall, the only

criterion for selecting OpST or AKDTree is the time cost rather than

the compression performance. This is consistent with our previous

design aim, that is, AKDTree is mainly designed to address the

high time overhead issue of OpST. Since OpST and AKDTree have

a similar speed when the density is around 50%, we propose to

choose 𝑇1 = 50 for choosing OpST or AKDTree.

Next, to determine the threshold𝑇2 for switching betweenAKDTree

and GSP, we also evaluate them on different datasets with different

densities. As shown in Figure 11, when the density is relatively

low, AKDTree outperforms GSP with respect to both bit-rate and

PSNR; when the density gets higher and higher, GSP gradually

outperforms AKDTree. We can also observe that AKDTree and GSP

have similar compression performance when the density is around

60%. Thus, we use 𝑇2 = 60% for choosing AKDTree or GSP.

In summary, our proposed hybrid compression approach is de-

scribed as follows.

(1) When the density is smaller than𝑇1 = 50%, we will use OpST

to remove empty regions and then perform the compression;

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Lossy Compression for Scientific Data
	2.2 AMR Method and AMR data
	2.3 Existing AMR Data Compression
	2.4 k-D Tree for Particle Data Compression

	3 Our Proposed Design
	3.1 Optimized Sparse Tensor Representation for Low-density Data
	3.2 Adaptive k-D Tree for Medium-density Data
	3.3 Ghost-Shell Padding for High-density Data
	3.4 Hybrid Compression Strategy

	4 Experimental Evaluation
	4.1 Experimental Setup
	4.2 Evaluation Metrics
	4.3 Evaluation on Rate-distortion
	4.4 Discussion on Comparison with Baselines
	4.5 Evaluation on Post-analysis Quality with Adaptive Error Bound
	4.6 Evaluation on Time Overhead

	5 Conclusion and Future Work
	References

